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Abstract. This paper examines global context classification in peer-to-
peer ad-hoc mobile wireless networks (P2P-MANETS). To begin, circum-
stances are presented in which such systems would be required to classify
a global context. These circumstances are expounded upon by presenting
concrete scenarios from which a set of requirements are derived. Using
these requirements, related work is evaluated for applicability, indicating
no adequate solutions. Algorithmic approaches are proposed, and analy-
sis results in a benchmark as well as bounds for distribution of processing
load, memory consumption and message passing in P2P-MANETS.
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1 Introduction

One of the advantages of pure P2P-MANETS[9] over structured client-server
network architectures is their ability to adapt to new situations and account
for mobility without drastically increasing complexity. The concepts of situa-
tional, context and activity recognition have been expanded to include ad-hoc
mobile networks, such as wireless sensor nodes and cellular phones. In the ad-
hoc network and embedded systems fields, these approaches have been focused
on devices which are capable of recognizing their local situations and using this
information for local decision making or communicating it to a centralized back-
end system with various degrees of preprocessing, compression and data fusion.

These paradigms, while very useful for many applications, stand in contrast
to the concept of P2P-MANETS. In embedded systems, local recognition by a
device of its own situation can be very useful in local decision making processes.
In distributed sensing systems, transmission of local situational information to
a central location allows the system to recognize global situations and reduces
the volume of communication when compared to forwarding unprocessed data.

For fully distributed ad-hoc wireless systems such as P2P-MANETSs how-
ever, there is no theoretical, algorithmic or practical support available for global
context recognition in related work. This paper will begin by identifying environ-
ments and example scenarios for global recognition in P2P-MANETS in Section
2, and extracting a list of requirements based on those scenarios in Section 3. In



Section 4, related work will be examined for applicable approaches, followed by
a discussion in Section 5 and the conclusion in Section 6.

2 Application Scenario

Local situations refer to a situation occuring in the immediate environment of
a network node, or subset of nodes, and can be sensed and recognized by that
node or nodes. Global situations on the other hand, occur over the domain of
the entire MANET and are not directly measurable at any one position, but are
rather deduceable only when confronted with distributed measurements from
multiple nodes within the network. The necessity to recognize global situations
arise under the following circumstances:

The network has sporadic access to a data sink, network bridge or other com-
munication module. A typical application for this kind of setting is provided by
the landmarke ad-hoc firefighter support network[11]. This network is deployed in
an environment with unstable communication channel characteristics[12]. How-
ever, despite a connection loss to the central uplink, the individual firefighter
should still be informed about the situation of the entire team.

The network has access but at an exorbitant price in terms of energy con-
sumption, bandwidth, delay, etc. An examplary use case for this setting could
be free-range monitoring of livestock where only an expensive uplink is available
to inform the care taker. While activities of individual animals are important,
situations affecting the whole herd (e.g. herd fragmentation, being harried by a
wolf, etc.) call for a global classifier (Fig. 1).
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Fig. 1. Distributed Classifier Architecture in a P2P-MANET for Livestock Monitoring

The network without uplink must be situationally aware and act locally. De-
ploying P2P-MANETS in real life settings usually leads to incorrect function of
the network due to unforseen permutations of environmental features. For in-
stance, in the case of a distributed, autonomous sensor-actor system for monitor-
ing and controlling a pump station, the observation of local network parameters
could be the input to a distributed algorithm which could identify different types
of failure situations and initiate preventative measures.



3 Requirements Analysis

Based on the application scenarios, it is possible to highlight the requirements
which a distributed classification algorithm must fulfill:

Requirement 1 Survival of Node Failures. In all three scenarios it is clear
that nodes may drop out of the network without warning due to connectivity
issues or node failures. The global classifier algorithm must be able to continue
functioning, even if in an impaired fashion, implying that any single point of
failure within the network would break with this requirement.

Requirement 2 Recovery from Node Failures. Not only must the algorithm
be able to survive failures, it is also crucial that it can recover from these failures,
meaning that successive node replacements do not lead to long term degradation
of the algorithm. In the livestock monitoring example, imagine a situation where
there is a certain animal throughput, meaning animals are constantly being
added to and removed from the herd. Without this capability the performance of
the classification algorithm would slowly degrade over time as each animal which
leaves the herd causes the irreparable loss of a certain amount of functionality.

Requirement 3 Ability to Approzimate the Mapping Function. Each of the
three scenarios represents a different mapping function from the input signals to
the contextual ground truth. Moreover, in each scenario, the exact context which
the system recognizes is only vaguely fixed and may be arbitrarily complex. As a
result of this, an algorithm which would be able to accomplish these tasks must
be able to learn the solution, no matter how complex the mapping function is.

4 Related Work

In parallel computing multiple nodes work simultaneously to reduce processing
time compared to a sequential approach. A brief review of algorithms from this
field showed that these either rely on a central coordinator [2], [10] or are man-
aged by dedicated scheduling instances [7], failing to fulfill Req. 1 (survive node
failures) or building on different conditions and cost models than MANETS.
Collaborative models and in-network data fusion are one of the most straight-
forward methods for P2P based classification. Therein each node contributes
to a global consensus based on locally recognized situations. However, while
approaches [14,6] from this field employ different strategies to reach a global
consensus, they are limited in the complexity of the mapping from local input to
the global decision. These approaches observe the state of each of the nodes, and
make a decision about the global situation based on these states, but without
observing the identity or functionality of each node (voting). The global context
algorithm is then only a function quantities of local contexts, in violation of
Req. 3 as it can only map a subset of classification functions (see sec. 5 for a
discussion). Recently [13] and [5] presented novel methods of processing context
data within the nodes of a wireless network. However, there the classification
is carried out by a single node, violating Req. 1 and 2. Finally, [8] presents
a framework for distributed inference based on Bayesian networks and belief



propagation. While this approach meets all requirements, “convergence may take
a long time, or it may never happen” if the variables or the network are dynamic
[8], making it inappropriate for situational recognition.

In Organic Computing, approaches such as swarm intelligence are distributed
paradigms for solving optimization problems inspired by the biological processes
of swarming, flocking and herding. Various authors from this field, e.g. [3], [1]
present algorithms for the distributed detection and global classification of situ-
ations. However, these algorithms conduct this in a collaborative fashion which
does not support Req. 3, or use a central unit to perform recognition over a
feature map generated in a distributed fashion which is not reconcilable with
Req. 1. In short, distributed classification approaches from the area of Organic
Computing cannot be directly applied to global situational recognition in P2P-
MANETS.

5 Analysis and Discussion

Social Role. In the machine monitoring example, all objects will have been
present at classifier training time. This means that if a machine component is
separated from the network and then later returns, the classifier will correctly
map the data generated by that object to the output function of the classifier,
as specified by Req. 1. The implication is that when the object is reconnected,
whatever power was lost with respect to recognition at disconnect is regained.
In the case of livestock monitoring, animals may leave the herd and be re-
placed by other unique individuals. This presents the problem of how to include
the new animals in classification. Simply substituting the data from the new
animal in the global vector (see Figure 1) can also be problematic, as there is no
reason to believe that the new animal plays the same role in the herd dynamics.
Eventually, constant animal throughput would cause complete randomization of
local vector locations in the global vector, leading to degradation of algorithmic
performance, and situational inferences based on the previous data would no
longer necessarily remain valid, violating Req. 2. This leads to the following:

Lemma 1. A system in which new data is appended to the global vector at a
position which is not role-dependent can be modeled by randomly re-locating the
data from each node in the global vector at each classification phase.

A possible way to combat this effect would be to train the classifier using
random positions for each partial vector (the data generated by each node) from
each object in the total feature vector. This assumes de facto homogeneity among
the objects (e.g. livestock animals) as the information gathered from a certain
animal can be input at any location on the feature vector without affecting the
output of the classifier. Since no single object can assume a specific role, the only
functions which can be mapped by the classifier at learning time are quantity-
based functions (e.g. if the majority is sleeping then the herd is sleeping), rather
than inferences based on the roles of certain individuals as to the situation of
the whole (e.g. inferences based on the dominant roles of certain individuals).
This yields the following:



Lemma 2. A classifier trained on a global vector in which features from each
object are appended to the global vector at random positions can only learn map-
pings based on quantities or counts of nodes.

Unfortunately, functions over the quantities of objects reduces the system to
majority and voting-based collaborative systems such as [14]. Standard classifiers
implicitly learn object roles in the learning process as feature (vector) positions
in the input vector are constant over time. A system in which these positions
are not constant must therefore explicitly account for these fluctuations.

Theorem 1. A global classifier which does not observe the individuality or role
of each of the objects being monitored is only capable of classifying global contexts
which can be reduced to functions over quantities and counts of node states.

Brute Force Method. The simplest solution to the global classifier problem
in terms of complexity is the brute force approach, in which each node transmits
all locally generated data required for global context classification to every other
node in the network, and then each node locally classifies the global situation.
Theoretically, if the classifier is identical on each node, and the data vector is
also identical, each node should locally classify the identical global situation.

The disadvantages include the amount of memory required by each node to
store the entire classifier, the number of transmissions required to transmit all
data generated to every other node, as well as energy consumption due to the
redundancy. On the other hand, the network is extremely stable as failed nodes
do not adversely affect the classification of the rest of the network, as long as the
classifier used can accommodate the variable feature vector length (see [4]). Also,
new nodes which are added to the network must only receive the parameters for
the classifier and be added to the global list of data publishers and subscribers
in order to become functioning members of the new system.

Other Solutions One approach would be to select a classification algo-
rithm which easily lends itself to distributed execution and apply this to the
entire network. Such algorithms are often referred to as connectionistic methods,
(e.g. neural network, multi-agent system, spatial reasoning, etc.) which involve
processors (neurons) and connections between these processors. This would re-
duce processor load and memory required when compared to the brute force
approach, though it is initially unclear what affect this would have on commu-
nication between nodes. Such a method requires time synchronization which is
indeed costly in ad-hoc P2P networks, though it would overcome the conver-
gence issues of [8], and increased communication could possibly be combated by
P2P self-organization.

Another approach would be to distribute the data instead of the execution.
This could be accomplished by adapting instance-based learning methods such
as k-Nearest-Neighbors or Self Organizing Maps to be distributed over multiple
nodes along the principle that vectors which are close to each other are also
close to each other in terms of hops. Once again, self-organization could be
employed to account for varying network structure and mobility, but the amount
of communication incurred and the advantages over brute force must be studied.



Resource Consumption Analysis Assuming N peer-to-peer nodes and
objects in the network, and a distributable global classification algorithm with
memory consumption M and processing load P. The brute force approach incurs
the full memory consumption of M and processing load P locally at each node, as
the classifier is redundantly stored and executed. The number of messages which
have to be passed between nodes is IV — 1, as each node needs to communicate
local features to every other node in order to build the global feature vector, or
N(N — 1) messages in total. The memory consumption is thereby increased to
(M +S,), where Sy is the size (length) of the global feature vector.

For a distributed connectionist reasoning approach, assuming each node is
an input, output and hidden processor (e.g. neuron), then each node will have
to pass 2 messages. Each processor requires input and generates output, where
the input for the input processors is generated locally, and the output processor
is output locally. In other words, per classification phase 2N messages must be
passed by the system. Local memory consumption is now that incurred by 3 of
3N processors, where 3NN processors can be held in M memory, or %, plus the
length of the local feature vector, giving % + S;. Each node must execute 3 of
3N processors, where the total processing load is P, yielding a load of % per
node. This indicates that this approach would reduce memory consumption by
w + (S4 — S1), processing load by w and the number of messages
passed by N(N — 3).

Taking this one step further, we can hypothesize about the lower bounds for
resource consumption in P2P-MANETS. In an optimal situation, each node sends
local information to the exact logical location where it is needed (1 hop), and
the system has no redundancy, indicating that each node transmits 1 message
per classification phase, for a total of N messages. Also, optimally the system
would distribute the memory consumption M and processor load incurred P
equally across all nodes, yielding % and % respectively. This indicates that while
being optimal in terms of memory and processor requirements, the connectionist
reasoning approach would still be sub-optimal in terms of message passing by a
factor of 2.

6 Conclusion

This work began by identifying the need for peer-to-peer classification of global
situations in MANETS. This is based on three different circumstances which oc-
cur in a subset of standard deployments, where either there is no communication
with the outside world, that communication is very expensive, or a link is only
available from time to time. These situations were elaborated on by presenting
three example scenarios, safety monitoring in firefighter teams, monitoring and
alerts in livestock management, and industrial monitoring and controlling. These
scenarios were then analyzed in order to extract requirements for a peer-to-peer
classification algorithm in wireless ad-hoc networks. This analysis indicated a
further requirement of respecting heterogeneity of the different objects being
monitored. Hypothetical upper and lower bounds for processing load, memory



usage and communication volumes were elaborated, and a brute force (upper
bound) and neural network (close to lower bound) approach were examined.
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