
Using Prediction to Conserve Energy in Recognition on Mobile Devices

Dawud Gordon, Stephan Sigg, Yong Ding, Michael Beigl

Karlsruhe Institute of Technology, TecO

Karlsruhe, Germany

Email: [firstname.lastname]@kit.edu

Abstract—As devices are expected to be aware of their
environment, the challenge becomes how to accommodate these
abilities with the power constraints which plague modern
mobile devices. We present a framework for an embedded
approach to context recognition which reduces power con-
sumption. This is accomplished by identifying class-sensor
dependencies, and using prediction methods to identify likely
future classes, thereby identifying sensors which can be tem-
porarily turned off. Different methods for prediction, as well as
integration with several classifiers is analyzed and the methods
are evaluated in terms of computational load and loss in quality
of context. The results indicate that the amount of energy which
can be saved is dependent on two variables (the acceptable loss
in quality of recognition, and the number of most likely classes
which should be accounted for), and two scenario-dependent
properties (predictability of the context sequences and size of
the context-sensor dependency sets).

Keywords-context recognition; context prediction, machine
learning; embedded and mobile systems;

I. INTRODUCTION AND RELATED WORK

As concepts from pervasive and mobile computing be-

come more mainstream, the community seeks practical

approaches for realizing pervasive technology. Situational,

context or activity recognition techniques provide a method

for machines to recognize human and social situations,

allowing them to act proactively without contradicting or

offending their owners. Modern technological devices such

as smart phones or wireless sensor networks are now able to

handle these algorithms [1] as processing power and memory

improve over time according to Moore’s Law. Unfortunately,

energy storage and consumption on such devices are not

subject to the same doubling effects and are quickly becom-

ing the limiting factor in pervasive technology. This can be

seen clearly when reviewing the battery lifetimes for mobile

phones over the past 10 years. The cost of communication

in terms of energy consumption is another factor which

does not scale according to Moore’s Law, indicating that for

pervasive computing applications to be practical, methods

for low power situational recognition must be embedded in

mobile devices.

Embedded classification for mobile devices is not a new

concept and goes as far back as 1997 [2], where Bouten el

al. used simple signal processing to measure activity levels

of users wearing a mobile device. Several methods for low

power embedded context classification have been introduced

in the community [3][4][5][6], and trade-offs that must be

made between classification quality and energy consumption

for embedded context recognition are discussed in [7], [8].

While these approaches effectively reduce power con-

sumption in certain situations, we propose a method for

further reduction based on the concept of context prediction.

Context prediction as studied in [9] can be used to make

a prediction about future situations based on situations

recognized in the past. By developing a dependence mapping

between contexts, features and sensors, we propose to use

context prediction to parameterize sensor usage, sampling

and feature generation in order to further reduce unnecessary

power consumption while minimizing the negative effect on

classification accuracy.

II. CONTEXT, FEATURE AND SENSOR MAPPINGS

The standard process for situational recognition using

machine learning algorithms is straightforward. Sensors are

sampled in parallel at an arbitrary rate for an arbitrary period

of time, after which the data is then saved as a discrete

multidimensional array, referred to as a sample window. This

window is processed using different algorithms to generate

so called features, e.g. standard deviation, average, FFT or

cepstral coefficients. Which features are used depends on the

application, i.e. which situations we want to recognize and

the type of sensor being used and are referred to all together

as a feature vector. The feature vector is then passed to a

machine learning algorithm whose task is to recognize which

situation was occurring during the sample window, based on

its feature vector.

When observing this chain of events in the context clas-

sification process, it should be clear to the reader that each

feature in the set of features used f ∈ F is implicitly mapped

onto a single sensor in the set of sensors s ∈ S, namely

the single sensor which generates the data for this feature,

producing the surjective mapping a of features onto sensors:

a : F → S

Mapping recognition classes onto the features is not as

simple and requires a bit more legwork. The concept of

selecting features which best suite an application is not new,

Könönen et al. provide an overview of feature selection algo-

rithms for embedded systems in [10]. While these algorithms

potentially improve the quality of classification and reduce

c1
c2
c3
...

ci

f1
f2
f3
…

fj

s1
s2
s3
...

sk

Q F SC

b a

qcifj

Figure 1. (C)lass, (F)eature, (S)ensor Mappings (a,b) and Weights (Q)

the computational load, they do not provide a mapping of

features to classes by relevance or importance.

It should be clear to the reader that turning sensors on and

off will result in a dynamic feature vector length, and for

this reason we will consider classifiers which can natively

support this. Specifically, nearest-neighbor classifiers are

well suited to this task as omitting a feature represents a

dimensional reduction of the labeled training vector space,

and the missing features are simply excluded from the

distance calculation. Hidden Markov Models are also well

suited as the observational distributions for these variables

are ignored when calculating the probabilities of the hidden

states. Both of these examples lose only the information that

would have been gained from the missing features, but are

not further negatively affected [11].

In order to generate the weighted mapping, training data

is gathered for each class. After training the classifier over

all of the training data, each class is tested for dependency

against each feature. This is done by testing the trained

classifier against all of the training vectors for each class

and removing each feature one at a time (all other features

are reinstated), and the degree of dependency is inferred

using the the drop in accuracy when a feature is removed:

a large drop in recognition indicates a high dependency, a

small drop, low dependency.

The result of this is a weighted mapping b : C
Q
−→ F of

classes C onto features F with quality values q ∈ Q where

q has a value from 0 to 1, namely the cost of that feature

for that class in percent loss in recognition accuracy. Both

mappings can be seen in Fig. 1, where Each class c ∈ C

is mapped onto each feature f ∈ F over the parameterized

mapping b with a quality weight qcifj ∈ Q for class i and

feature j, and each feature is in turn mapped to one sensor

sk ∈ S over the mapping a.

As each feature will incur a certain loss in recognition

q ≥ 0, and it is assumed that at least one q will be non-

zero for each class, it is necessary to decide what loss is

acceptable for each application: l. Using the mappings a

and b and weights Q we must now calculate the total cost ω

of each sensor with respect to each class, as this is required

in order to judge if turning off a sensor will violate l.

For each sensor sj the subset Fsj ⊆ F is built which

Prediction Prediction

S
e
n
s
o
r

S
a
m
p
lin
g

F
e
a
tu
re

G
e
n
e
ra
ti
o
n

C
la
s
s
if
ic
a
ti
o
n

H
ig
h
-L
e
v
e
l

P
re
d
ic
ti
o
n

L
o
w
-L
e
v
e
l

P
re
d
ic
ti
o
n

Sensor Data

Sensor Data

Class

Class

S
e
n
s
o
r

C
o
n
tr
o
l

Activation

Activation

Activation

Features

Features

Features

Figure 2. Integration of the Classification and Prediction Processes

represents all features generated using that sensor. For each

class ci, the subset Qcisj ⊆ Q is then built, which contains

the costs q of all features f ∈ Fsj , or the cost of each feature

generated using sensor sj with respect to class ci. Now the

total cost of a sensor with respect to a class can be calculated

ωcisj =
∑

q∈Qcisj

q. If Ωci is the set of ω for all sensors

with respect to the class ci, then in order to perform the

sensor optimization for class ci, the sensor sn|∀j;ωcisj ≤
ωcisn , meaning the sensor (sj) of least importance to that

class (ci), can be turned off and ωcisj subtracted from l.

This is repeated until l is depleted, meaning until removing

the next least pertinent sensor would violate the acceptable

loss threshold for the specified application.

Now, for each class ci, a set of sensors Sci has been

identified which is required in order to recognize that class,

and more importantly, we can identify sensors which are

not of interest given the acceptable accuracy loss l. The

next section will analyze the use of context prediction to

generate a set of classes which are likely to appear in the

next sample window, and will allow us to shut off sensors

which are not needed to conserve energy.

III. CONTEXT PREDICTION

The general approach to using context prediction to con-

serve energy is simple: the system should be able to predict a

subset of classes which are likely to occur in the near future,

i.e. the next sample window. Using this information and the

mapping of classes onto features onto sensors, it is logical

that the set of sensors necessary to recognize that class can

be identified and activated as shown in Fig. 2, providing an

energy advantage over systems which use all sensors at all

times, while maintaining loss of accuracy below l.

Since we use prediction to deactivate sensors, we also

have to consider the impact of the absence of this sensor data

on prediction accuracy. This means that the input time series

dimension is dynamic, which might reduce the prediction

accuracy as the information provided is reduced. This affect

is especially serious when prediction is carried out before

feature data is aggregated or classified (low-level prediction).

In [12] we derived that prediction accuracy is affected by the

amount of pre-processing applied to the input time series,

though in this case, this dependency must be further explored

to account for fluctuation in the dimension of the input time

series.

Unlike low-level prediction, a high-level approach (using

feature or context data) is typically applied to an input time

series with fewer dimensions and a reduced sample space.

Since the time series of feature values are already aggregated

and classified at high-level prediction, it is an inherently

easier task when compared to low-level prediction, and

the effects of the of the dynamic sensor configuration are

reduced. Several algorithms such as ARMA [13] which can

be applied to numerical time series data, can not be applied

to the symbolic context data which is likely to be found in

high-level context time series. A very general method for

context prediction on high-level data is to utilize a Markov

process [14], which is optimal in the sense that it can always

achieve the highest possible prediction accuracy for infinite

binary random sequences [15].

Using a Markov Chain trained during classifier training

for illustration, we could use this chain to predict the set

of states, or classes, which are likely to occur in the next

sample. As with the acceptable recognition loss, there is

once again an application-based trade-off which has to be

made: where to draw the line between what is a likely

enough state to be accounted for in the near future, meaning

that the sensors required for that class should be activated

before entering the next sampling phase. This decision can

be made by selecting set of the p most likely classes, where

1 ≤ p ≤ N for a scenario with N classes.

IV. EVALUATION

Computational Load: To generate the class to fea-

ture parameterized mappings, each iteration requires only

one classification step using the trained classifier, yielding

O(NM), where N is the number of classes and M is the

number of features. This is only possible if a classifier is

used which can handle a variable feature vector length. If

this is not the case, a new classifier must be trained for

each different variable combination in order to compare

classification rates for the class-feature mapping weights

which would increase computational load by the cost of

classifier training. This would not only greatly increase

computational load at training time, but memory usage at

runtime as N × M classifiers must be stored locally for

classification.

The task of prediction must be periodically carried out

on the node, which is why analyses of these processes is

also of interest for this work. A comparison between several

prediction approaches regarding their computational load is

not always straightforward, since the load is not always

directly comparable. Consider, for instance, the ARMA and

the Markov prediction methods. When the length of the

observed context time series is k and C denotes the number

of possible context values, context prediction using ARMA

methods has an asymptotic complexity of O (k log(k)),
plus the cost of classifying the predicted data. For Markov

prediction methods, the complexity is O (|C|) [9].

For high-level prediction, the prediction step itself is

computationally very simple and can easily be optimized.

A Markov Chain can be represented by an N ×N matrix,

where N is the number of classes between which the system

should distinguish. After each classification, the probability

for each class can be retrieved from the table, and the p

highest probabilities are selected. This computation is a

linear search through one row or column of the matrix,

which grows as O(N) where N is once again the number of

classes which we are trying to distinguish. Once p has been

fixed, the p most likely next states for each state become

static and the operation becomes O(1).
Dependencies: In Sec. III, two variables were identified

which would allow the application designer to affect the

energy/accuracy trade off. The first is l, or the acceptable

recognition loss for the specific application or scenario.

Setting this value closer to 1 creates a system with possibly

low recognition rates, but higher energy savings, while for

a value closer to 0 the behavior approaches that of a system

without any energy optimization. The second variable which

can affect the trade off is p, or the set of states which should

be accounted for in the next sample window. Following

Sec. III, as this value approaches 1, the energy savings are

maximized, but so too is the possible loss in recognition

rates, as the set of recognizable classes is reduced to one.

As p approaches N the power savings and recognition loss

rates approach that of a system without optimization, e.g. 0.

Furthermore, two properties intrinsic to the particular

scenario were also identified which will affect the en-

ergy/accuracy trade off in the system. The first the pre-

dictability of the data, which is a function of the scenario

itself, as well as the prediction method being used [13], [14].

Unpredictable data will lead to large errors in the prediction

causing power savings to come at disproportionately high

recognition rate costs. On the other hand, if predictions

are accurate, power savings would be far more affordable.

The second property is the grouping of the sensor/feature

dependencies, or the size of S − Sci for each class, and the

costs ω of those sensors. To demonstrate, imagine a system

in which each class is equally dependent on each sensor,

meaning the sensor weights in Ω are equally distributed

for each class. Turning off any sensor could then lead to a

direct violation of the acceptable loss l, forcing the system

to maintain all sensors on at all times. In the opposite case,

imagine a system where each class is dependent to 100% on

only one sensor, meaning Ω contains one 1 and otherwise

0’s for each class. Assuming flawless prediction, only one

sensor would be on at any given time, optimizing energy

savings with no loss in classification accuracy.

V. THE NEXT STEPS

Although the main concepts have been presented here, a

full evaluation of the system is yet to be completed. This

will clarify the advantages and disadvantages of high-level

vs. low-level prediction methods as well as the dependencies

between energy savings, recognition accuracy loss and the

two system variables. The approach is two-fold, where

initially the system will be tested using simulation, followed

by an evaluation using a high-modality sensor board to

validate the simulation results under real conditions.

One other aspect which is being explored is the further

parameterization of the mappings a and b to reflect the cost

of each feature and sensor in terms of power consumption,

and to introduce this as a metric for further optimizing

sensor and feature selection, i.e. the system will be reticent

to use expensive sensors and features. Furthermore, until

now the recognition algorithm has been considered as the

only application running on the device with full control

over sensors. In reality, especially when considering smart

phones, other applications will run along side, or on top of

the recognition and have their own requirements for sensing.

The mappings can then be used to opportunistically improve

activity recognition by evaluating feature computational

costs when sensors are in use by other applications.

VI. CONCLUSION

In this paper we have proposed a method for conserving

energy in context recognition by using prediction algorithms.

A method for mapping classes onto features and weighting

these according to incurred loss of recognition accuracy was

put forward. It was then shown how these mappings allow

predictions to be applied to the system to turn off unneeded

sensors. Two scenario-based properties which will affect

the success of the approach were identified, namely the

inherent predictability of the data, as well as the dependency

distributions of classes over the sensors. Furthermore two

system variables where introduced which will affect the ratio

of power consumption and recognition rates. Specifically,

these are the amount of loss in recognition rates which are

acceptable, as well as how many classes should be accounted

for based on each prediction. Finally, the next steps for

evaluating the effects of the methods and the correlations

between the crucial variables, prediction accuracy, classifi-

cation accuracy and energy savings was detailed.

ACKNOWLEDGMENTS

The authors would like to acknowledge joint funding by

the European Commission under the ICT project “CHOSeN”

(Project No. 224327, FP7-ICT-2007-2) and by the Deutsche

Forschungsgemeinschaft (DFG) under the project “Sense-

Cast ” (BE4319/1).

REFERENCES

[1] M. Berchtold, M. Budde, D. Gordon, H. Schmidtke, and
M. Beigl, “ActiServ: Activity Recognition Service for Mobile
Phones,” in ISWC’10: Proceedings of the Fourteenth Interna-
tional Symposium on Wearable Computers. Seoul, S. Korea:
IEEE Computer Society, 2010, pp. 83–90.

[2] C. Bouten, K. Koekkoek, M. Verduin, R. Kodde, and
J. Janssen, “A triaxial accelerometer and portable data pro-
cessing unit for the assessment of daily physical activity,”
Biomedical Engineering, IEEE Transactions on, vol. 44,
no. 3, pp. 136–147, March 1997.

[3] O. Cakmakci, J. Coutaz, K. V. Laerhoven, and H. werner
Gellersen, “Context awareness in systems with limited re-
sources,” in In Proc. of the third workshop on Artificial
Intelligence in Mobile Systems (AIMS), ECAI 2002, 2002,
pp. 21–29.

[4] M. Stäger, P. Lukowicz, and G. Tröster, “Implementation
and evaluation of a low-power sound-based user activity
recognition system,” in ISWC ’04: Proceedings of the Eighth
International Symposium on Wearable Computers. Washing-
ton, DC, USA: IEEE Computer Society, 2004, pp. 138–141.

[5] A. Y. Benbasat and J. A. Paradiso, “A framework for the
automated generation of power-efficient classifiers for em-
bedded sensor nodes,” in SenSys ’07: Proceedings of the
5th international conference on Embedded networked sensor
systems. New York, NY, USA: ACM, 2007, pp. 219–232.

[6] A. Krause, M. Ihmig, E. Rankin, D. Leong, S. Gupta,
D. Siewiorek, A. Smailagic, M. Deisher, and U. Sengupta,
“Trading off prediction accuracy and power consumption for
context-aware wearable computing,” in Wearable Computers,
2005. Proceedings. Ninth IEEE International Symposium on,
Oct. 2005, pp. 20–26.

[7] M. Stäger, P. Lukowicz, and G. Tröster, “Power and accuracy
trade-offs in sound-based context recognition systems,” Per-
vasive and Mobile Computing, vol. 3, pp. 300 – 327, 2007.

[8] N. B. Bharatula, M. Stäger, P. Lukowicz, and G. Tröster,
“Empirical Study of Design Choices in Multi-Sensor Context
Recognition Systems,” in IFAWC: 2nd International Forum
on Applied Wearable Computing, Mar. 2005, pp. 79–93.

[9] S. Sigg, S. Haseloff, and K. David, “An alignment approach
for context prediction tasks in ubicomp environments,” IEEE
Pervasive Computing, vol. Oct-Dec 2010, 2010.

[10] V. Könönen, J. Mäntyjärvi, H. Similä, J. Pärkkä, and M. Er-
mes, “Automatic feature selection for context recognition in
mobile devices,” Pervasive and Mobile Computing, vol. 6,
no. 2, pp. 181 – 197, 2010.

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifica-
tion, 2nd ed. New York: Wiley, 2001.

[12] S. Sigg, D. Gordon, G. von Zengen, M. Beigl, S. Haseloff,
and K. David, “Investigation of context prediction accuracy
for different context abstraction levels,” IEEE Transactions
on Mobile Computing, 2011, (to appear).

[13] C. Chatfield, The Analysis of Time Series: An Introduction.
Chapman and Hall, 1996, vol. 5.

[14] W. Feller, An Introduction to Probability Theory and its
Applications. Wiley, 1968.

[15] M. Feder, N. Merhav, and M. Gutman, “Universal prediction
of individual sequences,” IEEE Transactions on Information
Theory, vol. 38, no. 4, pp. 1258–1270, July 1992.

