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ABSTRACT
Humans are social beings and spend most of their time in
groups. Group behavior is emergent, generated by members’
personal characteristics and their interactions. It is therefore
difficult to recognize in peer-to-peer (P2P) systems where the
emergent behavior itself cannot be directly observed. We in-
troduce 2 novel algorithms for distributed probabilistic infer-
ence (DPI) of group activities using loopy belief propagation
(LBP). We evaluate their performance using an experiment in
which 10 individuals play 6 team sports and show that these
activities are emergent in nature through natural processes.
Centralized recognition performs very well, upwards of an
F-score of 0.95 for large window sizes. The distributed meth-
ods iteratively converge to solutions which are comparable
to centralized methods. DPI-LBP also reduces energy con-
sumption by a factor of 7 to 40, where a centralized unit or
infrastructure is not required.
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1. INTRODUCTION
Human beings are social creatures, and as such we spend
most of our time in groups [19]. Groups are better than in-
dividuals at accomplishing tasks, which is often why they are
formed in the first place [7]. Understanding group behav-
ior and context is then crucial for intelligent environments
and assistive technologies through a process called group ac-
tivity recognition (GAR) [8]. GAR has the potential to en-
able crowd management systems to be aware of and adapt to
crowd behavior in real time, potentially saving lives in crowd
emergencies [12]. However infrastructure is often the first ca-
sualty in emergency situations [4], motivating the research
of P2P methods. These methods can also alleviate band-
width bottlenecks due to the “curse of dimensionality,” and
improve privacy for social and smart environment applica-
tions by keeping behavioral data within the group. Mobile
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devices such as Smart Phones present an attractive platform
both for human activity recognition (HAR) and the recogni-
tion of group activities. The behavior of the group is emergent
behavior, generated by the personal characteristics of the indi-
vidual members and the group dynamic [16, 7]. Kurt Lewin,
a pioneer of modern social psychology, uses the term “emer-
gence” to signify that the properties of the behavior of the
group are fundamentally different than the properties of the
behavior of the individuals, or of the “sum” of those behav-
iors [16], a definition which we follow.

P2P GAR is therefore a challenging and interesting problem
because the group behavior cannot be observed by any single
device and can only be recognized by fusing distributed ob-
servations. In a parallel publication we address the problem
of detecting group affiliation using wearable sensor data and
P2P algorithms [10]. Here, once the members of the group
have been identified, we now wish to recognize the behavior
of that group. We present novel methods for GAR based on
distributed probabilistic inference (DPI) combined with loopy
belief propagation (LBP) [20], and compare the results with
centralized approaches. For each group activity, the behavior
is broken down into individual clusters using unsupervised
methods. Each node estimates its belief over its local clusters
for all group activities given current sensor observations, and
communicates this information to its neighbors. All nodes
iteratively update and re-communicate their beliefs based on
the belief estimates received, and a model of individual-to-
individual group dynamics. The network then iterates and
converges towards a response estimation. We present two
methods for LBP, one using linear regression over soft pos-
terior probabilities of user behaviors (SLBP), and one using
expectations of the most probable behavior (HLBP).

The novel algorithms are evaluated using an experiment in
team sports with 10 subjects playing 6 different sports using
Android phones. The experiment naturally creates emergent
group behavior and the algorithms are evaluated in terms of
recognizing that behavior (which sport is performed). Cen-
tralized inference of emergent group behavior when pre-
sented with the complete set of group sensor data is relatively
straight-forward, approaching an F-score of 0.81 for a win-
dow length of 2 seconds and 0.96 for 10 seconds. However
inference using solely the data of each subject independently
is poor at around 0.55 for the same window. The DPI-SLBP
approach begins at iteration 0 at the same value as with in-
dividual subject inference over 2s, but then rapidly improves
with each iteration, surpassing the centralized naive Bayes
approach after three iterations and converging to an F-score
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of 0.84 after about 10 iterations. DPI-SLBP increases in the
amount of local memory consumed and processing required,
but reduces the amount of energy required overall for classi-
fication by a factor of almost 7. The simplified DPI-HLBP
algorithm performs similarly but converges to a lower value
of 0.81, just under the centralized approach. However DPI-
HLBP requires less energy for classification than DPI-SLBP
by a factor of more than 6, or 40 times less than that required
by the centralized approach.

2. RELATED WORK
Inferring single-user activities from the distributed behavior
of the body is also an emergent recognition problem [2].
However limbs don’t change roles, and their interactions with
each other are mechanical in nature, presenting a simpler
problem than GAR. Multi-user activity recognition (MAR)
is the process of recognizing the activities of multiple indi-
viduals in parallel [8]. Subjects may be interacting with each
other or even members of the same group. Some work com-
bines MAR and GAR where some labels are individual activ-
ities and other emergent group behavior [23, 13]. However
these approaches do not address the problem from a decen-
tralized standpoint. Distributed approaches to context recog-
nition have been introduced [25] but cannot be applied to non-
emergent phenomena. Distributed probabilistic inference has
been effective for distributed sensor calibration [21] which
is in itself a distributed phenomena, but loopy belief prop-
agation does not converge, requiring a complex networking
architecture for clique structuring and belief propagation.

Video systems present an advantage as they are able to view
both individual and emergent group behavior simultaneously
[5], as well as properties of individual roles [17]. How-
ever such approaches require infrastructure for communica-
tion and processing. Microphones also provides insight into
the group activity [14] and allow extraction of certain types
of role information [6]. While audio data is powerful for rec-
ognizing social context, it cannot directly sense physical be-
havior and scales with the number of users poorly. Centrally
monitoring location has also been shown to give insight into
emergent properties of larger groups or crowds [24]. Adding
motion sensors also allows properties such as affiliation of
users to each other and to groups [22].

Emergent behavior has also been addressed in the separate
but related field of swarm intelligence in animals and insects
[11]. Here the problems addressed usually have one of three
different goals, either looking to simulate the emergent group
behavior based on models of individuals (generation) [15],
discover the rules governing individuals based on the emer-
gent behavior produced (discovery) [18], or evaluate the cor-
rectness of assumptions about the relationship between local
agents and emergent group behavior (evaluation) [15]. Our
approach here differs from this field because we wish to pre-
dict the emergent group behavior based on observations of
agents (humans) who are far too complex to model using ex-
pert knowledge.

3. CONCEPTS AND APPROACH
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Figure 1. Factor Graph for DPI-LBP with Evidence p(K,X), Potential
 (Ksi ,Ksj ) (for All i, j, Some Omitted), and Classification p(B,K)

In this section we begin with the fundamental principles
which govern group behavior from the fields of group dynam-
ics and social psychology. Inspired by these abstract models
and theories, we construct concrete methods for modeling and
classifying group behavior in a probabilistic fashion.

3.1 From Field Theory to Probability Theory
Kurt Lewin’s Field Theory states that an individual’s behav-
ior is dependent on their personal characteristics c 2 C and
the social environment of the group E [16]. The behavior
of the individual is also a function of their role in the group
[3], which we will denote as ⇢ 2 R. For GAR we require
probability p of all group behaviors B given the contributing
factors, namely the personal characteristics and roles of the
individuals: p(B) = p(B|C,R).

GAR is focused on physical behavior, and we can make ob-
servations of those characteristics using sensors. We use the
notation x

⌧
s to indicate a single observation, or observations

over a window, for subject s at time ⌧ . Xs refers to all obser-
vations for subject s, Xb refers to the evidence of all subjects
for a single group activity, and X is the complete set of ob-
servations for all subjects and activities. We can now replace
C with X , or p(B|X,R).

Identifying the role of an individual requires explicit labeling
of those roles by experts in that activity and social psychol-
ogy. The evidence X is conditionally dependent on both the
individuals characteristics, and the role of the individual in
the group [7]. To avoid the need for specific role labeling, we
cluster the evidence into clusters  2 K, where bs is a cluster
from subject s generated by group behavior b and their role
⇢

b
s in that behavior: K = 8b2B8s2Gclust(Xs|b). Each clus-

ter now indicates a modality of behavior of an individual who
has some unknown role in the group behavior. We refer to
these as “role-behavior” clusters.

3.2 Modeling and Classifying Group Activities
The clustering approach is probabilistic using Expectation
Maximization [20]. For each group activity and subject, X
is separated into X

b
s and then clustered, yielding clusters Kb

s .
The probability density function (PDF, or P ) of the clusters
for a subject and group activity is given by a Gaussian mix-
ture model (GMM) [7]:

P (X

b
s |Ks) =

X

b
s2Kb

s

⇡b
s
N (Xs|µb

s
,⌃b

s
) (1)
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Each node s has clusters Ks where each cluster s is gener-
ated by a certain group behavior b, giving a subset of clusters
for each group activity bs 2 K

b
s . These clusters now build the

evidence function for inference of group activities. The pos-
terior probability distribution p(K|X) can be obtained using
Bayesian inference, where each posterior is normalized using
the following equation:

p(

b
s|x⌧

s ) = Post(

b
s|x⌧

s )| {z }
GMM posterior

like(K

b
s |x⌧

s )P
b02B like(K

b0
s |x⌧

s )| {z }
GMM likelihoods normalization

(2)

Here posteriors are generated over the Gaussian mixtures for
each class Kb

s given an observation x

⌧
s , after which the pos-

terior distribution is normalized by the likelihood of all ac-
tivity cluster models for that subject. Both the likelihood of
a GMM and the posterior of a cluster given an observation
are obtained by applying Bayesian inference and the Law of
Total Probability [20]. Due to the normalization in Eq. (2),
the resulting probability distribution over all clusters for all
activities for each subject (Ks) sums to 1. This step is later
necessary for nodes to learn relative probability distributions
of neighboring nodes based on histories of these distributions
generated by observations. Classification, or a behavioral es-
timator ˆb, of the current group activity at any point in time for
a single subject is given by Eq. (3).

ˆ

b(x

⌧
si) = argmax

b
p(b|Ksi , x

⌧
si)

= argmax

b

X

b
si

2Kb
si

Post(

b
si |x

⌧
si) (3)

Intuitively, each node classifies the group activity based on
the most likely role-behavior cluster in the most likely activ-
ity. The classification approach of evaluating local posteriors
using local evidence (Eq. (2)) can be used to evaluate the
ability of a single node to infer the group activity based on lo-
cal observations alone , which we call the independent local
inference (ILI) method.

Two methods of inferring group behavior centrally are ex-
amined for comparison with the distributed approaches. The
first is Bayesian inference using the complete posterior distri-
butions over K given X . For this purpose, ⇠ is constructed:

⇠

⌧
:= 8

s2G
8

ks2Ks

append(Post(Ks|x⌧
s )) (4)

For each time-step ⌧ , ⇠
⌧

is then a vector of the complete nor-
malized posters across K. Using this set as observations,
a naive Bayesian classifier is constructed to model P (⇠|B)

and then to infer p(B|⇠⌧ ) for each time-step ⌧ . This method
is referred to as centralized cluster-based inference (CCI).
The second centralized method is a more traditional Bayesian
inference using the observations directly. Here P (X|B) is
modeled as a GMM using the Expectation Maximization
(EM) algorithm [7], and p(B|X) can then be inferred, re-
ferred to hereon as centralized naive Bayes (CnB).
We approach the distributed problem using DPI with LBP.
The missing information sampled by other nodes which is
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Figure 3. Performance for Centralized Algorithms, Distributed Inde-
pendent Classification and the Resulting Degree of Emergence

necessary in order to infer the emergent behavior is propa-
gated through the network in the form of beliefs. Non-loopy
belief propagation has the advantage of being guaranteed to
converge to a solution, but requires extensive networking sup-
port to avoid cyclical propagation and to factor the prior [21].
Loopy belief propagation (LBP) is simpler to implement, but
whether or not it converges for a specific type of problem is
unclear, and how many iterations are required is unknown.
These questions are investigated here and as we will see in
Sec. 5 the system does converge relatively quickly. The equa-
tion for DPI-LBP is given in Eq. (5).

p(K|X) =

Y

si2G

p(Ksi |Xsi)| {z }
local evidence

Y

sj 6=i2G

 i,j(Ksi ,Ksj )| {z }
potential function

(5)

The potential function  can be any positive function which
defines the relationship between the variables at subject si
and sj . Intuitively,  i,j allows node i to tell node j what it
believes about j’s behavior based on what i believes about its
own behavior (Fig. 1). For this function we used linear re-
gression [20] to model the relationship between the variables
of each pair of subjects, or Ksi and Ksj . As stated before,
the evidence function is trained using EM for unsupervised
clustering of each subjects data for each group activity. Each
potential function is trained using linear regression from the
variables Ksj of other subjects to each cluster si separately.
The resulting linear mapping takes the form:

 i,j = 8
si2Ksi

8
sj 6=i2G

↵+ [�1,�2, . . . ,�n]⇥ [p(Ksj )] (6)

Where [p(Ksj )] is a column vector of all cluster posteriors
sj 2 Ksj . This method we call DPI with soft LBP (DPI-
SLBP) due to the “soft” posterior probability distributions
which are mapped in  .

Each iteration consists of a local inference step followed by
several update and classification steps. In the inference step,
each node si generates a posterior distribution over its clus-
ters using its local evidence function from Eq. (5), creating an
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Figure 2. Device Placement (Left) for the Team Sports Group Activity Experiment (Middle) with Relative Subject Locations on the Field (Right)

initial estimate of the group activity based only on local be-
havior estimates. In the first update step, this information is
propagated to all neighboring nodes sj , i.e. all nodes within
range of one-hop communication. These nodes then convert
this estimation of the posterior probability distribution over
Ksi to a belief over Ksj using  . These beliefs are then com-
bined with the current beliefs of node sj over Ksj and the
resulting classification of the group behavior is reevaluated
using Eq. (3) in the classification step. The update and clas-
sification steps are then repeated until the network is satisfied
that convergence has been reached, where we will empirically
evaluate how many update steps are required in Sec. 5.

We also present a simplified version of the aforementioned
DPI with LBP approach. SLBP requires each node to broad-
cast its posterior Post(Ks|Xs) to all neighboring nodes.
Probabilistic classification works on the assumption that the
most likely model given specific evidence is the correct model
for that instance. Based on this assumption, the most valuable
information p(Ks|Xs) is the most likely cluster in the most
likely activity, namely argmaxkb

sj
p(k

b
sj ). We present a sim-

plified method where beliefs are calculated using only this
information, instead of the full cluster posteriors p(Ks|Xs).
This simplified method takes the same form as Eq. (5) with a
modified potential function presented in Eq. (7).

 

simp.
ij = p(Ksi | argmax

kb
sj

p(k

b
sj )) (7)

We refer to this method as DPI with hard LBP (DPI-HLBP)
due to the hard role-behavior classification in the potential
function.

For Lewin, emergent behavior is only observable given the
whole, and not when observing the individuals. We define a
metric for activity recognition which expresses this. The “de-
gree of emergence” ✏ is the proportional increase of activity
recognition scores given all data (CnB), to the mean of ac-
tivity recognition of all nodes using their local observations
(ILI), quantified using the F-score.

✏(B|X) =

F-score(ˆb(B|X))�
P

s2G F-score(b̂(Bs|Xs))

|G|

F-score(ˆb(B|X))

(8)

This measure is dependent on and specific to the models used,
the subjective observations (labels), and only for the behav-
ior recognition problem, and does not necessarily be general-

ized over these parameters, other definitions of emergence, or
other recognition problems.

4. EXPERIMENT AND PROCEDURE
To evaluate the approach detailed in the preceding section
we constructed an experiment with emergent group activities.
The activities performed were team sports, where the emer-
gent behavior is the sport being played itself, based on the
observations of the physical behavior of the individuals. LG
Nexus 4 Android devices sampled the accelerometer, gyro-
scope and magnetometer at 50 Hz, 50 Hz and 20 Hz respec-
tively, as well as GPS location for simulating the communi-
cation range only.

The devices were attached at the right hip (see Fig. 2), shown
to be effective for activity sensing [2]. 6 different team sports
were performed by all subjects: volleyball, badminton, foot-
ball (soccer), ultimate Frisbee, touch rugby, and flunky-
ball for 10 minutes each. The experiment was conducted out-
doors in a 15m by 20m field, and a video recording was made
from an elevated standpoint of the experiment. The subjects
were made up of 7 males and 3 females, with experience lev-
els averaging 4.5 with a variance of 3.5 on a scale of from (no
experience in all sports) to 10 (very experienced in all sports)

The data recorded was synchronized, hold-resampled to 50
Hz, and input into an offline sensor replay mechanism in
MATLAB. This sensor data was windowed from 1 to 10 sec-
onds, where the window is advanced by 0.5 seconds each it-
eration over which features where calculated. For each win-
dow length, all models are retrained and reevaluated using
the features generated over the windows. 50% of the data is
used to train the algorithms, and the other 50% (2-fold cross-
validation) for evaluating algorithmic performance after ran-
domization. This creates a more difficult recognition prob-
lem then e.g. 10-fold cross validation. The goal is to gain an
understanding of the relation between distributed and central-
ized approaches, where a more difficult recognition problem
is advantageous. The features used were the mean and vari-
ance of the total acceleration signal, the mean and variance
of the azimuth orientation with respect to the subject’s body,
and the mean and variance of the rotation around the X and
Z axes (see Fig. 2 for orientation). These features calculated
for subject s then represent the observations Xs of the sub-
ject, where ⌧ is the last timestamp of a sensor data window.

We then simulated performance for a communication range �
of 5m, 10m, 15m, 20m and 1 sequentially, compared to the
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Connectivity (� = 1)

diagonal of the field of 25m which is also a good approxima-
tion of the radius of the group. We used the relative Euclidean
distance between two subjects dist(si, sj) based on their GPS
coordinates, and judged them to be able to communicate if
dist(si, sj)  �. The timestamp used to evaluate dist(si, sj)
is the final timestamp of the window ⌧ , as this is the point
where the network is able to evaluate the distributed evidence
functions and communicate beliefs. No multi-hop communi-
cation is implemented, simulated or required for the methods
presented here.

5. EVALUATION

5.1 Centralized Recognition
To analyze performance of centralized inference using the
complete picture of sampled sensor data, we looked the per-
formance of CnB, CCI, ILI and the degree of emergence ✏
of this specific problem. In Fig. 3 the performance is shown
over varying lengths of the feature analysis window. The CnB
algorithm performs the best, with F-scores of 0.71 for a win-
dow of 1 second, increasing up to a recognition rate of 0.96
for a window of 10 seconds. For the given scenario and set
of conditions, the emergent group behavior can be recognized
using relatively straight forward methods, if observations of
all members of the group are present.

The CCI approach yields an F-score of 0.52 for an observa-
tion window length of 1 second, with an optimum of 0.70
for a window length of 3 seconds, after which it subsides to-
wards random classifications with an F-score of 0.31 at 10
seconds. This would appear to indicate that posteriors over
role-behavior clusters do not contain the pertinent informa-
tion required to infer group behavior. However, as we will
see later, this is not the case. The implication is therefore
only that naive Bayesian inference is not the correct method
for inference using these posteriors. Bayesian inference us-
ing GMMs separates the data probabilistically using EM for
clustering, but the posteriors themselves do not separate well
into such clusters.

For a window size of 1 second, the mean F-score of all nodes
across all experiments (ILI) was 0.48, with a variance of 0.05.
For 10 seconds, the mean increases to 0.82 and variance drops

slightly to 0.03. The longer the time-line of data used to clas-
sify the group activity, the better the group activity can be
recognized, both for the centralized as distributed evidence
functions. Also the quantified emergence of the group activ-
ity shrinks with the size of the window from 0.34 for 1 second
to 0.16 for 10 seconds.

The reason for the reduction in ✏ over time is that sports ac-
tivities in general are very dynamic in nature, where play-
ers change roles rapidly. Over time, a classifier observes the
majority of role-behaviors from a single subject, improving
classification of the emergent behavior. This effect cannot be
generalized to other forms of group activities such as social
gatherings or meetings and is specific to the experiment con-
ducted here. For the remaining evaluation of the distributed
algorithms, a window size of 2 seconds has been selected.

5.2 DPI with LBP
The results of DPI with SLBP for a window size of 2 seconds
and a communication range of � = 1 are displayed in Fig.
4. The shape of the curve presented demonstrates clearly that
the distributed algorithm does indeed converge to a solution.
This solution is reached after 15 iterations at an F-score of
0.86 (precision 0.86, recall 0.85). At iteration 0, the lower
bound is given by the evaluation of the local evidence func-
tions of each node separately, and corresponds to the value
for a window size of 2s in Fig. 3. This value even exceeds
the centralized approach at 0.81 (precision 0.83, recall 0.82)
after 3 iterations where 95% of convergence, a value of 0.84
is already reached after 6 iterations. It must be noted here
that the indication is not distributed inference performs bet-
ter, but that the potential performance using posteriors over
K is higher than the performance of a nB classifier over X .
The standard deviation across nodes is 0.045 for iteration 0,
but drops to 0.027 after one iteration and converges to 0.021.

The results of DPI with HLBP with the same parameters
(� = 1, ws = 2) are shown in Fig. 5. Iteration 0 also begins
at the same lower bound as in Fig. 4. A similar convergence is
also clearly visible, but convergence occurs at 0.80 (precision
0.82, recall 0.79), as compared to a value of 0.86 for the full
potential method. The standard deviation also drops dramat-
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Figure 7. Convergence Curves for DPI-HLBP for Varying Ranges �

ically after one iteration from 0.045 to 0.037, and then itera-
tively converges to 0.031. This value is however greater than
the standard deviation of 0.021 for the regression-based po-
tential function. Here again, 95% of convergence is reached
fairly quickly after 5 iterations. The effects of the simpli-
fied potential function HLBP are clear. Convergence occurs
slightly faster (1 iteration less for 95%), but converges to an
optimum 7% less than when using SLBP, and the standard
deviation across nodes also increases by 68%. However, the
reduced F-score and increased standard deviation come with
reductions in resource consumption, which can be advanta-
geous for certain applications.

5.3 Effects of P2P Communication
The two novel distributed methods were also simulated for
various communication ranges. The range � was simulated
for 5m, 10m, 15m, 20m, and 1, or full connectivity. The
mean F-score results for SLBP are displayed in Fig. 6. There
the value for � = 1 corresponds to the data in Fig. 4. Mean
values for 20m and 15m perform similarly to full connectiv-
ity, converging to a value of 0.85 and 0.84 respectively, com-
pared to 0.86 for full connectivity. Reducing communication
to 10m and 5m converges to 0.80 and 0.68 respectively.

Similar behavior was also observed for performance using
HLBP for the same simulated communication distances in
Fig. 7. Communication ranges of 20m and 15m iteratively
incur a loss of less than one F-score point, although 95% of
convergence requires 6 iterations. At 10m, convergence oc-
curred at an F-score of 0.76 with 95% reached after 8 itera-
tions. Reducing communication further to 5m also required 8
iterations and converged to an F-score of 0.65.

A survey of convergence values for both algorithms after 5
iterations can be seen in Tab. 1, where the coverage is simply
the ratio of the of � to the diameter of the group, assumed
to be the diagonal of the field 25m. From full connectivity
to 15m range there is little effect on the convergence times,
although the using the simplified potential function incurred
a greater reduction of 4.9 percentage points (pp) as apposed
to 2.4 pp for regression-based potentials. This effect is due
to the speed of belief propagation for the two algorithms. For

Table 1. Coverage and Convergence in % After 5 Iterations
Convergence Convergence

Range Coverage (%) SLBP (%) HLBP (%)
1 100 91.2 94.6

20m 80 89.6 91.5
15m 60 88.8 89.7
10m 40 86.5 86.5
5m 20 91.1 91.7

 

simpl. the propagation takes more “effort” as a node must
receive enough belief contrary to its current state before its
internal belief about its must probable cluster changes. For
the regression-based approach, this occurs more quickly as
beliefs are integrated and propagated in a continuous man-
ner. For these communication ranges, the large majority of
nodes are in the same network with occasional disconnection
of individuals as they leave the group, e.g. to collect the ball.
Hence, only the small changes in recognition rates over these
ranges as belief propagates over intermediary nodes through-
out the network.

For a communication distance of 10m, both algorithms prop-
agate information quickly, but the network breaks apart into
disjoint sub-networks as groups of nodes and individuals are
out of range of each other. This is the cause of the reduced
recognition rates in Figs. 6 and 7 for a range of 10m, where
necessary information cannot propagate to all nodes due to
the lack of a link between nodes in different sub-networks.
For a range of 5m the network becomes disjunct, and nodes
only have one or two other nodes in the same sub-network.
The results can be seen clearly in the low convergence rates
in Figs. 6 and 7. However, convergence occurs quickly, as
beliefs are only propagated to small subgroups of G.

5.4 Resource Consumption Analysis
The resource consumption is only for the classification phase
of GAR. The values presented in Tab. 2 are approximations,
calculated from the bitrate and power consumption of differ-
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ent communication technologies [1]1, based on computation
time and communication volumes from the simulation. The
model assumes an Android Nexus 4 Device with processing
on a single core with a consumption of 0.5W. For the DPI
algorithms, 10 iterations are assumed which is well over the
amount required for 95% convergence presented in Tab. 1.
DPI-SLBP reduced power consumption due to communica-
tion by 84% compared to CnB, and DPI-HLBP presents a
reduction of 97.5%. DPI-SLBP increases response time by
a factor of 2.5, although server-side calculations for CnB are
not taken into account [8]. DPI-HLBP however reduces the
reaction time of the system by 51% with respect to CnB,
which is around 5.5 times less then the reaction time of DPI-
SLBP. CnB only requires the amount of memory to store 1
window of sensory data. For DPI-SLBP, around 30 times
more storage is required or almost 100 kB. DPI-HLBP only
requires around 5 times more memory than CnB, represent-
ing a reduction of over 83% compared to DPI-SLBP due to
the reduced size of the expectation look-up table compared to
linear regression mappings. It is important to note that the ne-
cessity to communicate with a server or centralized instance
is removed for DPI-LBP algorithms.

6. DISCUSSION
The large reductions in resource consumption and low con-
vergence time make DPI-HLBP an attractive approach. How-
ever, the effect of reducing communication range was more
pronounced than for DPI-SLBP. For both algorithms, conver-
gence time increases as the group grows proportional to the
communication range (see Tab. 1), but it grows slower for
DPI-SLBP then for DPI-HLBP. For applications where the
surface area of the group is large proportional to the commu-
nication range, e.g. groups or crowds in public areas, propa-
gation rates for DPI-SLBP could be greatly affected. For such
applications the indications are that DPI-SLBT is the best ap-
proach to take, although performance and scalability to large
groups was not evaluated here. Each node is only dependent
on neighboring nodes, meaning the approach is very scalable,
limited by the time needed for beliefs to propagate.

For small groups such as the one analyzed here, this time is
negligible. However if the required response time drops rel-
ative to iteration time, the algorithms may not converge. For
both algorithms however, it is important that the communi-
cation range be proportional to the surface area of the group
such that the vast majority of group members are connected
to at least one other member by one link, and to all mem-
bers by at least one multi-hop path so that belief may propa-
gate. In the case of sport activities, this is a range of around
12.5m-15m, or 50% of the surface area of the group. How-
ever there are other aspects of GAR which are not addressed
here [9]. Group members can come and go over time, leading
to changing group sizes and changes in individual and group
behavior characteristics. These aspects are outside the scope
of this work and are the subject of continuing research [13],
for GAR in general and using DPI-LBP.

1
http://www.csr.com/sites/default/files/

white-papers/comparisons_between_low_power_

wireless_technologies.pdf

7. CONCLUSION
Group activities are emergent from the individual character-
istics of group members, their roles in the group, and the
group dynamic [7]. The group behavior therefore has prop-
erties which are different from the properties of the behavior
of the individuals, as well as the “sum” of those individual
properties [16]. We have shown that the emergent behav-
ior of the group can be inferred using centralized inference
methods with F-scores upwards of 95% possible for this sce-
nario. Using clustering to address the problem of inference
without explicitly requiring role, we presented two methods
of inferring emergent behavior in a distributed fashion, us-
ing local estimations (DPI) and exchange of belief estimates
(LPB). The first (DPI-SLBP) propagates beliefs based on lin-
ear potentials over posteriors from subject to subject. The
second (DPI-HLBP) propagates beliefs as expectation of the
most likely behavior of an individual.

DPI-SLBP and DPI-HLBP converged to F-scores of 0.84 and
0.80 respectively compared to a centralized inference of 0.81
for the same parameters. Reducing the the communication
range to 50% of the diameter of the group only marginally
affected the value which the distributed algorithms converged
to, as long as the range did not create disjunct networks out
of the single group. However it did affect convergence time,
where the effect on DPI-HLBP was greater, increasing the
number of iterations needed. For larger groups or crowds
where local communication range is small in proportion to the
surface area of the group, DPI-SLBP is then preferable. How-
ever, DPI-HLBP greatly reduces local resource consumption
compared to DPI-SLBP, making it attractive for small group
applications. HLBP and SLBP increase locally memory con-
sumption though remaining under 100 kB, where the former
reduces response time and the latter increases it slightly com-
pared to a centralized system. The conclusion is the follow-
ing: 1) DPI-LBP over role-behaviors does converge for GAR,
2) the convergence accuracy is dependent on how many nodes
are connected to the P2P network, 3) convergence speed is
dependent on the degree of connectivity of that network. In
total, the distributed approaches allow inference of emergent
group behavior using only wearable devices, with implica-
tions for crowd emergency management, intelligent environ-
ments, and privacy-aware social applications.
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