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ABSTRACT
Collaborative data communication is one of the efficient ap-
proaches in wireless sensor networks (WSN) in terms of life-
time, reliability and quality of service (QoS) enhancement.
In this paper, we propose a new self-optimized collaborative
algorithm which minimizes the energy consumption by de-
creasing the number of collaborative nodes and at the same
time guarantees the demanded quality. To do this, we focus
on the fact that during the collaboration, a receiver node
aggregates the signals of the collaborative nodes separately.
The major task of this node is the time adjustment of the
collaborative nodes to receive their signals synchronously.
The proposed algorithm performs an extra process to sort
the aggregated signals based on their bit error rate (BER)
as the quality and select the minimum number of the nodes
with higher rank for collaboration. It is because the low
quality signals have negative effect on the collaboration per-
formance, as confirmed experimentally. The new algorithm
gains higher level of energy storage balance without increas-
ing of the inter-node communications or computational load
by modification of the node selection metric. It also guaran-
tees the demanded QoS through modification of the collab-
oration based on the signal quality at the destination which
results in higher reliability. Based on the proposed algo-
rithm, sensor nodes can gain the optimum efficiency during
collaborative data communication without external manage-
ment resources. The algorithm is applicable in various sce-
narios and network structures.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design—distributed networks, wireless com-
munications
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1. INTRODUCTION
In spite of the limitations in the sensing, processing, com-

municating and energy storage capabilities of the sensor
nodes, WSNs are developing in our everyday life to en-
hance the quality by extending the smart living environ-
ments (smart-home or office), ubiquitously sensing of the
human health features (pervasive healthcare), etc. Although
the advances in electronic designs mitigate the constraints
of WSNs, the dependency of the current WSNs to exter-
nal management resources restricts their applications. One
natural solution to this problem would be to extend the
self-organization and optimization capabilities [8] within the
WSNs. It enables the sensor nodes to organize themselves
automatically and without external help and modify their
operations adaptively in order to maintain optimum effi-
ciency, reliability and life-time.

The limited energy resources of the sensor nodes and also
higher energy demand for data communication rather than
other functions (sensing or processing), has turned the data
communication in WSNs into a challenging issue. On the
one hand, sensor nodes need to actively communicate with
each other to improve the QoS but on the other hand, to
extend their life-time, they have to minimize the energy
consumption. In some scenarios like body area networks,
smart home and most of the WSNs developed for residential
or industrial environments, sensor nodes use constant energy
resources or are recharged manually. But energy efficiency is
still one of the important issues considering the need to save
as much energy as possible when feeding a large group of
nodes or to postpone the next required charging phase. The
same criteria hold for sensor nodes equipped with energy
harvesting modules. Due to the scarcity of available energy,
increased energy efficiency would mean increased node ac-
tivity. Moreover, time-dependent situation of the nodes and
WSNs makes real time optimization inevitable. Therefore,
self-optimization of the WSNs in terms of energy efficiency
has attracted great attention, e.g. in [6] the operation of the
sensor nodes (sensing and data communication) in tracking
of a moving target is optimized by modeling the WSN as
an ant colony, or in [5] [7] inspired by biological approaches,
routing algorithms are optimized automatically.

One of the efficient data communication techniques to
minimize energy consumption is collaborative data commu-
nication [3] [9] [1]. Due to the decreasing of the overall inter-



ference level by directional communication and distribution
of the energy consumption among the collaborative nodes
(which avoids early death of some of the sensor nodes), col-
laborative data communication considerably increases the
network life-time. In this technique, instead of individual
data communication, groups of sensor nodes at the trans-
mitter or receiver side collaborate in a transmit [3] [9] or
receive [1] collaboration process.

Despite the vast researches about collaborative data com-
munication, there are still some open questions. For in-
stance, to the best of the authors’ knowledge, there is no
idea how to estimate the optimum number of collaborating
sensor nodes. While the overestimation of this parameter de-
creases the energy efficiency, its underestimation results in
an inefficient collaboration and decreases the quality of the
communicated signal. Besides, different parameters such as
noise, interference, channel fading, battery storage, or mo-
bility of the nodes result in different capabilities of the sen-
sor nodes to contribute in collaboration. However, most of
the previous works (e.g. [1], [3] and [9]) are based on the
selection of a group of neighboring nodes for collaboration.

Obviously estimation of the optimum number of collab-
orative nodes as well as the selection of the most capable
nodes improves the collaboration performance. Due to the
variations in the network and sensor nodes’ status, this op-
timization scenario should be handled during the network
operation and based on the current state. The necessity of
decreasing WSNs’ need to external management resources
is another reason to extend self-optimization approaches.

There are some researches to develop self-X features in
routing algorithms [5] [7] or in communicating protocols [6],
but to the best of our knowledge, the idea of self-optimized
collaborative data communication is not yet being investi-
gated. Therefore, in this paper, our focus is on the self-
optimized collaborative data communication. After a re-
view of different current collaboration methods and a dis-
cussion over the effective parameters on the collaboration
performance, challenges and opportunities offered by self-
optimization of the collaborative data communication will
be investigated. Afterwards, the proposed ideas are applied
to one of the current collaboration algorithms which yields
an efficient self-optimized collaborative data communication
algorithm. Experimental results and computer simulations
are presented to support the theoretical discussions. The
examinations confirm the improved life-time and reliability
of data communication in WSNs.

2. COLLABORATIVE COMMUNICATION
Collaborative data communication can be realized either

in transmission or reception sides. collaborative sensor nodes
set a virtual array and adjust their time delays to increase
the directivity of the virtual array during signal transmis-
sion/reception. The following subsections are devoted to the
detailed explanation of collaborative data communication.

2.1 Transmit Collaboration
Transmit collaboration is mostly known as transmit beam-

forming. Similar to other beamforming systems, provided
that the transmitter is equipped with multiple antennas and
the time delays of the signal of each antenna is set properly,
the multiple signals combine constructively at the destina-
tion node, i.e. the proper phase shifts generate a directive
pattern toward the receiver. Directional data transmission

has positive effect on the overall network interference level
[10]. Considering the fact that signal quality at the receiver
depends on the signal to noise and interference ratio (SINR),
it is possible to maintain a fixed quality while reducing the
transmission power. The phase adjustment and array el-
ements’ number and position play a key role in the beam-
forming efficiency [10]. In WSNs, factors such as the random
distribution of the sensor nodes, ambiguity about the sensor
nodes’ relation, poor connection of the sensor nodes (wire-
less communications with unknown time delays), separate
RF subsystems and limited energy and processing resources,
make the realization of classical transmit beamforming im-
practical.

Mudumbai et.al. have proposed a transmit beamform-
ing algorithm for WSN applications [3]. Depending on the
network policy, data is usually transmitted following a pre-
determined schedule or after reception of a request from the
destination node. Collaboration is clicked by the setting up
of the virtual array and sharing of the transmitting signal by
the source node (the node which has some data to transmit).
The procedure is followed by synchronization and adjust-
ment of the time delays of the collaborative nodes. Follow-
ing proper time delay assignment, the transmitted signals
are combined constructively at the destination node (the re-
ceiver node). To accomplish this, various methods with dif-
ferent accuracy, energy consumption and time delays have
been proposed [9] [4]. One of the rather simple synchroniza-
tion methods that is full-feedback closed-loop method [11]
presented in figure 1. As seen in figure 1-a, the destination
node sends a synchronization message through the virtual
array. Collaborative nodes receive the signal and after de-
tecting the message, send it back through the destination
node via their own sub-channel (figure 1-b). Assuming the
same processing time for all of the collaborative nodes (due
to the variety of the sensor node’s tasks and sharing of the
processing resources, the time between the reception and
transmission of this message differ for various nodes), proper
time shifts are estimated at the destination node from the
feedbacks. The destination node sends the timing data back
to the collaborative nodes (figure 1-c). At this stage, the col-
laborative nodes are ready for data communication. They
send the signal simultaneously with lower power than that
of individual data communication and also the destination
node receives the constructive combination of the transmit-
ted signals (figure 1-d). Obviously, the transmission power
in the other directions decreases with respect to the array
beam-pattern.

Transmit collaboration keeps the sensor nodes’ energy stor-
age balanced by the distribution of the energy consumption
among the collaborative nodes. It also decreases the in-
terfering signals from the other nodes due to the directive
data communications. Transmit collaboration increases the
transmission range. This feature is useful to decrease the
time delay during multi-hop communications. Therefore, in
comparison with individual communication, transmit beam-
forming decreases the overall network power consumption.
Figure 2 represents the corresponding beam-pattern to a
random distributed set of five collaborating sensor nodes.

The above mentioned advantages are at the expense of
some extra local communications during initialization and
interaction between the collaborative nodes and the desti-
nation nodes. Therefore, depending on the number of col-
laborative nodes, the length of the communicated message
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Figure 1: Different steps of transmit collaboration; a. Transmission of the sync. message, b. Processing of
the sync. message and sending it back, c. Proper time shifts estimation and sending to the collaborative
nodes, d. Application of the time shifts and simultaneously data transmission by the collaborative nodes

Figure 2: Illustration of a sample beam-pattern gen-
erated by collaborative sensor nodes

and the distance between the collaborating and destination
nodes, the amount of collaboration energy efficiency varies.
It means that the efficiency can be optimized by adjusting
the effective parameters.

To formulate the dependency of energy efficiency to the
effective parameters, it is assumed that the collaborative
nodes are determined and the collaboration process is initi-
ated. According to [1] and [2], the associated energy con-
sumption to the sharing of the communicated signal, syn-
chronization and data communication steps are respectively,
Td ·PS , (2M + 1) · Tm ·PLc and M · Td ·PLc. Therefore, the
overall energy consumption during collaboration would be
Ec = Td · PS + (2M + 1) · Tm · PLc + M · Td · PLc, where
Td and Tm are the lengths of the data stream and com-
municated messages to initiate collaboration, and PS and
PLc are transmission power of inter-nodes and long-range
communication. To guarantee the demanded quality, the
transmission power should be more than L + SNRmin + N ,
where N is the additive noise power, SNRmin is acceptable
SNR and L is the transmission loss which according to the
Friis equation, depends on the distance (l) and frequency
(f ) as L = 20logl(km) + 20logf(MHz) + 32.45. Similarly,
energy consumption during individual data communication
is Ei = Td ·PLi, where PLi is the transmission power for long

range individual data communications. Due to the different
channel effects in the individual and collaboration cases, dif-
ferent transmission powers are considered. Defining energy
efficiency as e = (Ei − Ec)/Ei, we have

e =
Td · PLi − (Td · PS + (2M + 1) · Tm · PLc + M · Td · PLc)

Td · PLi

(1)
As observed, energy efficiency is affected by the length of

the communicated messages for initialization of the collab-
oration or data communication and the transmission power
during inter-node or long rage communications. The trans-
mission powers are affected by the environmental noise and
interference and the distance between the nodes (L). Energy
efficiency is further discussed in the next sub-section.

Due to multi-path effect, the received signal consists of
several components which have been through different paths
and this makes the time delay estimation process difficult.
Therefore, the key role of the time delays in transmit collab-
oration restricts its application to line of sight (LOS) scenar-
ios. Even if the time delay is estimated properly, because of
reflection from different paths, the signal quality and power
in non-LOS cases suffer severe degradation. Miniaturiza-
tion and mobility of the sensor nodes, which especially in
pervasive computing and wearable applications are desired,
intensifies this problem. Decreasing the updating intervals
to have more suitable signals at the receiver is also imprac-
tical due to high energy consumption.

2.2 Receive Collaboration
Inspired by transmit collaboration, in receive collabora-

tion [1] and [2], after setting up of the virtual array and
synchronization (similar to transmit collaboration), all of
the collaborative nodes receive the transmitted signal by
the remote node. Afterward, one of the collaborative nodes
is selected as the coordinator node to aggregate the sig-
nals and apply proper array processing algorithm. The re-
ceived signals are synchronous at the collaborative nodes.
But the random distribution of the collaborative nodes and
hence different inter-node distances disturb the synchronic-
ity. Without performing an extra synchronization step among
the collaborative nodes, aggregated signals at the coordina-
tor node would not necessarily be synchronous. In this case,
application of receive collaboration is restricted to very low
bit-rate communications so that in comparison with the bit
duration, the differences among the inter-node time delays



Figure 3: Impact of L: the distance between collab-
orative and destination nodes and M : the number
of collaborative nodes on the energy efficiency

are negligible. Proper modifications in the synchronization
step to remove these limitations are discussed in [2].

According to the duality theorem, transmission channel
and antenna pattern (both for single and array antenna)
have the same behavior in transmission and reception modes.
Therefore, assuming fixed collaborating and destination nodes,
the corresponding time delays of transmit beamforming are
also applicable in receive mode. During the combination
step, the coordinator node is responsible for the combina-
tion of the receiving signals. Similar to the transmit col-
laboration, non-LOS communication and multi-path have
negative effects on receive beamforming. Similar calcula-
tions for receive collaboration are in [2] and the results of
the analytical analyses are visualized in figure 3. In this
figure, assuming fixed data stream length and constant dis-
tance between collaborating and destination nodes (L), the
energy efficiency for various numbers of collaborative nodes
(M ) is calculated. This analysis is repeated for different val-
ues of L. As observed, increasing of M has different effects
on the energy efficiency. Depending on L, it causes some
increase in the energy efficiency. The curves are saturated
and tend to be decreasing, e.g. when L = 100m, efficiency
saturated after rather high increment from M = 5 to 15.
With the collaboration of more than 15 nodes, deterioration
in the energy efficiency is observed. Moreover as L increases,
to gain optimum energy efficiency, more collaborative nodes
are required.

3. SELF-OPTIMIZATION
In the previous section, it was shown that current collabo-

ration approaches are not at their optimum level in terms of
energy efficiency and reliability. In this section, we propose a
self-optimized collaborative data communication algorithm.

3.1 Self-Optimization Ideas
Before introduction of the self-optimized algorithm, the

optimization ideas are presented in this sub-section.

Figure 4: Impact of the selection of the best M
nodes on the collaboration energy efficiency: 40
nodes participate in the collaboration and only M
of them are selected

3.1.1 Optimum Nodes’ Count
In the previous section, based on the analytical analysis,

we showed that proper number of collaborative nodes (M )
can optimize the energy efficiency during collaboration. And
the optimum M depends on the distance between the col-
laborating and destination nodes (L) and length of the com-
municating data (Td). Although these analyses represent
the impact of the effective parameters on the energy effi-
ciency, some simplifications especially in transmission chan-
nel model, decrease the accuracy. Furthermore, the applica-
tion of this optimization technique is restricted to the scenar-
ios in which the distance between collaborating and destina-
tion node, is known in advance. Also, considering the time
variant status of the sensor nodes and the network, real-time
optimization of the collaboration requires extra processing
and communications to update the effective parameters in
the energy efficiency.

Since there are several time-variant parameters affecting
the minimum number of collaborative nodes to minimize the
energy consumption and at the same time guarantee the de-
manded QoS, the superposition of the collaborative nodes’
signals at the destination node should be somehow quali-
fied to find the minimum M. On the other hand, to keep
the energy efficiency high, the proposed method should not
load extra communication or computation. To realize this,
we lay our focus on the synchronization step in which, the
destination node receives the feedbacks from each of the col-
laborative nodes via independent sub-channels (e.g. in dis-
tinct time slots in TDMA based networks). Assuming the
same quality and therefore no priority for the sensor nodes
to participate in the collaboration, after synchronization of
the signals and estimation of the proper time delays, the
destination node estimates the optimum number of the col-
laborative nodes by sensing of the aggregated signal quality
(BER) for different values of M. Variation of this parame-
ter is represented in figure 4 for different levels of individual



Table 1: The measured BERs according to the ex-
perimental analyses
Cases BER1 BER2 BER3 BER(2,3) BER(1,2,3)

A 0.3296 4.8e-4 0.0102 2e-5 2.6e-4
B 0.3913 0.0043 0.0164 6e-5 0.0018
C 0.399 0.0086 0.024 3.2e-4 0.0055

signal quality (average BER). As seen, BER is saturated in
all of the curves but for the high quality ones it happens at
lower BERs. It means that to minimize the collaborative
nodes count, the individual signal qualities should also be
considered. For instance, in case of desirable BER = 0.2,
using quality level 3 (BER = 0.184), 25 sensor nodes should
participate in the collaboration. Increasing the overall signal
quality by using the curves corresponding to BER = 0.087
and 0.051 decreases the minimum number of collaborative
nodes to 15 and 9 respectively which is mainly due to the
increased probability of the existence of proper signals at
the superimposed output.

If the collaborative nodes do not satisfy the desired qual-
ity, the destination node sends a command to reset the
collaboration starting with higher number of collaborative
nodes. During collaboration, due to the variation of the
transmission channel or sensor nodes situations, the opti-
mum value of M may change. Proper feedbacks from the
destination node revealing the signal quality can re-optimize
this parameter.

3.1.2 Selection of the Higher Quality Nodes
Although in the last sub-section, an optimum number of

collaborative nodes was extracted due to non-realistic as-
sumption of the same quality for the entire participating
sensor nodes, collaboration is still not optimum in terms of
energy efficiency. There are some reasons listed below which
negatively affect the quality of the collaborative nodes signal
in the destination node.

• Due to the small dimensions of the sensor nodes in
comparison with the objects surrounding them in most
of the applications, even small objects may block the
line of sight (LOS) connection with the remote node.
The transmission loss of non-LOS channels is relatively
high because of the reflection from surfaces.

• As mentioned before, non-LOS links degrade also the
beamforming performance by affecting the time delay
estimation process.

• Based on their location and strength, interference and
noise resources also contaminate the signal in WSNs.

• Physical damages to the sensor nodes’ antenna, time
variant operation of the sensor nodes or battery deple-
tion are also other known reasons responsible for the
signal quality degradation in WSNs.

Negative impacts of the low quality superimposed signals
are investigated experimentally in figure 5. To ease the im-
plementation, the scenario is based on receive collaboration
but the results are also valid for transmit collaboration. In
this test, we used USRP1 software radio as the communi-
cation sub-system of the sensor nodes. The processing of
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the sensor nodes are performed at the computers connected
to the USRPs via USB connections. Figure 5-a presents
the experimental setup and the schematic of the required
sub-systems at transmitter and receiver sides. In this sce-
nario, there is one transmitter in the left (N0) and three
independent receivers in the right (N1 to N3). At the trans-
mitter side, an OOK (on-off-keying) signal is generated at
900 MHz carrying a random digital bit stream. This signal
is then transmitted via free space channel and is received by
the receiver USRPs which are attached to another computer.
Since all of the received signals are saved at the same com-
puter, collaborative nodes do not need to select a node to
manage the collaboration and send their signals to. Finally
the participating nodes are sorted in term of their signal
quality. The combiner module senses the BER of the super-
imposition of the first M signals to find the minimum num-
ber of the collaborative nodes to guarantee the demanded
signal quality. In this case, M varies from 1 to 3. Com-
munication of a bit stream enables us to test the previously
suggested ideas accurately by measuring BER.

To show the impact of the individual signal quality on the
collaboration performance, we change the quality of one of
the receiver nodes (N1) by bending its antenna which would
decrease the reception gain. Afterwards the impact of the
improper sensor nodes on the collaboration is evaluated in
three cases with different signal quality (BER). For each
case, samples of the captured signals are presented in fig-
ure 5-b to 5-d. The corresponding calculated BER of each
signal is summarized in Table 1. In all cases, the signal re-
ceived by N1 (sketched at left) is of lower quality compared
to the other nodes. According to Table 1, the quality of
the receiving signals by N2 and N3 are relatively good in
case A whereas in case B with increasing BER the quality
deteriorates and finally in case C the worst quality is ob-
served. Comparison of the BERs at the last two columns of
Table 1 shows that not only N1 has no positive effect on the
collaboration, it also decreases the quality of the superim-
posed signals. Comparison of the BERs in cases A - C shows
that the negative effect of low quality nodes on the collab-
oration increases by a decline in the overall signal quality.
It means, to have positive effects on the collaboration, the
participating sensor nodes should have qualities higher than
a threshold, otherwise their impacts would be destructive.
This threshold is calculated based on the average BER of
the participating nodes and the demanded BER.

On the other hand, following the previous discussion, the
quality of the sensor nodes’ signal is time dependent and so
their capabilities to participate in the collaboration vary by
time. Therefore, optimum sensor nodes should be selected
automatically and without external helps.

In most of the synchronization methods, destination node
receives the signals of the collaborative nodes separately via
one of the multiple access methods. Each received signal
contains information about the quality of the channel (noise
and interference level and transmission loss) between its cor-
responding node and the destination node. Since the collab-
orative nodes use the same transmission power, comparison
of the received signals quality is a suitable and practical
metric to sort the sensor nodes and pick the first M out of
them. To guarantee the quality of the collaboration output,
the node selection process can be performed based on the
comparison of the signal quality with a fixed or adaptive
threshold which is estimated based on the overall received



(a) Experimental scenario, relation of the USRP nodes and transmitter and receiver block diagrams

(b) Sample signals in case A

(c) Sample signals in case B

(d) Sample signals in case C

Figure 5: Experimental setup and sample signals at different test cases



Figure 6: Comparison of the minimum number of
collaborative nodes to gain different values of BER
for the proposed and conventional methods

signals quality. Obviously, in the case of having less than M
qualified signals, this step is repeated with a larger number
of collaborative nodes.

There are other synchronization methods (e.g. [7]) in
which the collaborative nodes do not transmit their signal
separately to the remote node. However still in such meth-
ods the rejection of the improper nodes can be fulfilled via
some modifications in the previously proposed technique.
For example. in receive collaboration, depending on the col-
laboration mode, the destination node sends signals to the
collaborative nodes. Before these signals are received by
the collaborative nodes, they undergo different transmission
channels. The coordinator node aggregates samples of the
received signals to evaluate their quality, sort them and se-
lect proper sensor nodes. Finally it announces the accepted
nodes for the collaboration. For these kinds of collabora-
tion methods, our optimization idea increases the inter-node
communications.

The effectiveness of the suggested approach is shown in
figure 6. In this figure, there are two sorts of BER curves;
the dashed curves representing the BER of the superim-
posed signals based on the conventional collaboration and
the solid curves, the BER of the superimposed signals ac-
cording to the suggested method. In comparison with the
conventional method, the curves representing the BER of
the proposed method decrease faster by increasing M. In
other words, in the proposed technique to gain a certain
value of the BER, less collaborative nodes and so less en-
ergy consumption is needed. Since sorting of the nodes is
based on their corresponding signal quality, the first signals
have the highest quality. Therefore, in comparison with the
case of random selection (conventional method), their su-
perimposition yields lower BER. But by increasing M, new
signals have lower quality. Therefore, after some values of
M, their effects are positive but low and at the last part
of the curves the impact of the additive nodes are destruc-
tive due to increasing of the BER. Figure 6 confirms also

Figure 7: Illustration of the positive Impact of the
proposed algorithm on the Life time

the achievements at the experimental investigations (figure
5 and table 1).

3.1.3 Balancing of the Battery Storage
If located in the hot spots or in the vicinity of strong noise

or interference or when sent through extremely lossy trans-
mission channel, some of the sensor, might have to increase
their activity or transmission power which would lead to
early energy exhaustion. The early death of some of these
nodes degrades the WSNs performance by leaving holes in
the coverage area. To balance the energy resources of the
sensor nodes by the distribution of the power consumption
among the collaborative nodes is considered as one of the
collaboration advantages.

A higher level of energy balance is still possible by consid-
ering the energy storage level in the optimum node selection
metric. When the signals are sorted based on signal qual-
ity and energy storage level, due to having higher rank, the
more qualified nodes with higher battery storage are selected
for collaboration. To realize this idea, the energy level data
can be attached to the feedback signals which are sent to
the destination node.

Figure 7 represents the improvement in balancing bat-
tery exhaustion by considering the energy storage level as
a complementary metric in the node selection process. In
this figure, it is assumed that in a WSN composed of 150
sensor nodes, data transmission is performed collaboratively
with 50 nodes. For the ease of simulation, the same mes-
sage length and also the same transmission power is con-
sidered. Therefore, each data communication costs a fixed
amount for energy of the collaborative nodes. The exami-
nation ends when only 50 active nodes remain. In the con-
ventional method, there is no priority in the participating
nodes whereas in the new method, at first M0 nodes partic-
ipate in the node selection stage. Assuming the same signal
quality, the destination node picks the participating nodes
with the highest energy level up. Different participating
node counts are examined in figure 7. As expected, even
a few extra nodes (M0 = 53 or 55) has significant positive



(a) Approach I (b) Approach II

Figure 8: Impact of the suggested algorithm on the minimum number of collaborative nodes: Comparison

effects on the energy storage balance and network life-time.
The effectiveness rate of the number of participating nodes
decreases by increasing M0. Although the energy consump-
tion during this stage is relatively low, to keep the energy
efficiency high, M0 should be selected properly, based on
the demanded balance level and acceptable communication
load.

Although this modification in the selection metric increases
the collaboration efficiency to balance the energy storage
level, it adds an extra processing and communicating load
to the collaboration initialization phase which limits the en-
ergy efficiency.

In case of the same priority for energy storage level and
channel quality (transmission loss, noise or interference), to
simplify the selection metric even more, merging of the two
suggested metrics is applicable. To do so, instead of send-
ing some extra signals representing the energy levels, sen-
sor nodes relate their transmission power to their energy
storage level. Since, low quality signals are assumed to be
either lossy transmission channel or high noise and interfer-
ence level or low battery storage, they can be rejected from
collaboration by sorting the signals only according to their
quality. This idea is used in the next subsection to propose a
simple self-optimized collaborative communication method.

3.2 Self-Optimization Collaborative Algorithm
In the previous sub-section, several suggestions were made

to optimize the collaborative data communication perfor-
mance. In this section, the mentioned collaborative com-
munication algorithm is modified based of these suggestions
and the new procedures are presented in Table 2. Although
applied to transmit collaboration, it can be generalized to
receive collaboration as well. The new underlined modifi-
cations are made in the synchronization and node selection
steps. The most computational load is that of the desti-
nation node to sort and pick up the proper nodes. In the
implementation of the proposed algorithm two different ap-
proaches can be considered:

Approach I: Participation of a fixed number of sensor
nodes in the collaboration and selection of the minimum
number of them to obtain a certain BER.

Approach II: Participation of M0 sensor nodes and se-

lection of M = ceil(α ·M0) nodes with the highest quality
where 0 < α < 1, where ceil(x) is the higher integer number
before x.

The impact of both approaches on the number of collab-
orative nodes is demonstrated in figure 8. The grey bars
represent the number of collaborative nodes needed to ob-
tain different values of BER (horizontal axis) in the first
approach whereas the black bars correspond to the conven-
tional method. Similar to that of figure 6, M0 = 40 sen-
sor nodes are assumed to participate in the collaboration.
They are synchronized by the destination node and the mini-
mum number of nodes which satisfy the desired BER (which
varies from 0.05 to 0.3) is selected. In the conventional algo-
rithm, the BER of the superimposed signals is calculated for
different number of collaborative nodes and although non-
realistically, it is assumed that the minimum number of sen-
sor nodes collaborate together. In practice, due to lack of
feedbacks from the signal quality, even more nodes should
be involved in the collaboration process to ensure reliability.

In the second scenario (figure 8-b), different number of
sensor nodes participate in the collaboration 80 percent of
which with higher qualities are selected. As observed, either
approaches yield to a decrease in the number of collabora-
tive nodes whereas with the first one, higher efficiency can be
achieved. This is mainly because of the availability of more
candidates at the destination node to be selected for col-
laboration which increases the chance of having more high
quality signals. Moreover, the efficiency further decreases
with an increase in BER. On the other hand, as depicted
in figure 8-b, since the proposed algorithm (with the second
approach) removes the low quality nodes from the collabo-
ration procedure, better signal quality with lower number of
collaborative nodes is achieved. This result is further con-
firmed during the experimental analysis in figure 5.

Although the number of collaborative nodes gives a rough
estimation of the operation of the proposed algorithm, more
precise performance comparison in terms of energy consump-
tion is presented. To do so, following the steps of Table 2,
the consumed energy by the two approaches to reach dif-
ferent BERs are compared in figure 9-a and 9-b. During
the simulations, at each BER, referring to figure 8 mini-
mum number of collaborative nodes to guarantee the sig-



Table 2: Psudo-code of the proposed algorithm, D: Destination and C: Collaborative nodes
Description at
Initialization C
Broadcast a request for participation D
Share the transmitting signal C
Accept the collaboration by sending an acknowledgment message C

Synchronization and node selection D
Transmit a sync. message to the collaborative nodes D
Estimate proper transmission power based on the battery storage C
Receive the sync. message and sending it back C
Estimate proper time shifts for collaborative nodes D
Sort collaborative nodes based on their signal quality (BER or SINR) D

Aggregate the first M superimposed signals to find minimum M to gain demanded quality D
If (proper M is achieved)
Send the timing and membership (accepted/rejected) data to the collaborative nodes D

else
send a command to reset the collaboration with higher number of nodes D

Data transmission C
Adjust the time shifts C
Transmit the shared signal simultaneously C
Receive the constructively Combination of the superimposed signals D

nal quality is achieved via both approaches as well as via
conventional algorithm. All communicated messages dur-
ing synchronization and node selection steps have the same
length (Tm). The test is then repeated for different lengths
of communicating data (Td).

As seen in figure 9-a, the energy consumption of the con-
ventional algorithm has uniform behavior at logarithmic scale
(approximately one decade decrease versus BER from 0.05
to 0.3) whereas the first approach of the proposed algorithm
has different behavior for different values of Td. To discuss
more about the results, we define the following two terms of
energy consumption:

• Energy consumption during initialization step (syn-
chronization and node selection), Einit, which depends
only on M0 and Tm.

• Energy consumption during data communication (Ecom)
which depends on Td and the number of collaborative
nodes (M0 in the conventional algorithm and M in the
proposed algorithm).

Energy consumptions referring to the proposed and con-
ventional algorithms are shown with index of P and C.
Therefore, the total energy consumption in these two al-
gorithms are

EC = EinitC + EcomC (2)

EP = EinitP + EcomP (3)

According to the previous discussions, we have

EinitC < EinitP (4)

EcomC > EcomP (5)

In each scenario, Tm, M0 and M are assumed to be con-
stant. Therefore, for lower values of Td where EcomP <
EinitP , the proposed algorithm demands more energy. This

situation corresponds to α = 1 and nearly α = 10. When
Td >> Tm(α = 100, 1k or 10k), then Ecom > Einit. There-
fore, during the comparisons, EcomC and EcomP have more
prominent roles. Hence, the energy consumption by the first
approach has the same variation as that of the conventional
algorithm. But the energy saving due to the application of
the new algorithm increases by Td, e.g. when the desired
BER is 0.05, and the length of communicating message is
Td = 100 ·Tm, with the new algorithm about 0.4 watt will be
saved. This parameter arises to 40 watts when Td = 1e4·Tm.

In figure 9-b the second approach of the proposed algo-
rithm is compared with the conventional algorithm. Since
in the second approach there is no extra communication load
during initialization, the corresponding curves of small Tds
(α = 1or10) have the same behavior as those of large Tds
(α = 1kor10k). But in the data communication stage, the
second approach uses less collaboration nodes which results
in less energy consumption. Similar to the first approach,
by increasing Td more energy is saved, but since the second
approach is a simplified version of the proposed algorithm
which has rather low computational burden, its effectiveness
to decrease the energy consumption is lower than that of the
first approach.

4. CONCLUSIONS
Several self-optimization ideas to optimize the collabora-

tive data communication algorithms in terms of energy ef-
ficiency, reliability and life time are proposed in this paper.
The ideas are very flexible and can be implemented in most
of WSNs and since they are based on the real-time sen-
sor nodes status and do not impose extra computation or
communication load, temporal variation of the nodes and
network situation does not have negative effect on their per-
formance.

Since the signal quality is affected by a variety of param-
eters, the best way to optimize the collaboration would be
to evaluate the signal quality of the participating nodes and



(a) Approach I (b) Approach II

Figure 9: Impact of the suggested algorithm on energy efficiency

select the minimum number of nodes to obtain the desired
BER. Different metrics including signal quality and energy
storage level can be used to select the optimum nodes. Anal-
yses show that the participation of the sensor nodes with the
signal quality lower than a minimum threshold in the col-
laboration has negative effects on the quality of the super-
imposed signals. Therefore, to reject the low quality nodes
from collaboration is advantageous in terms of signal qual-
ity and energy saving. Moreover, quality evaluation of the
superimposed signals in the destination node guarantees the
desired quality of service.

For performance evaluation and comparison, self-optimization
ideas are applied to one of the collaborative algorithms in
two approaches. The first approach decreases the mini-
mum number of collaborative nodes. The more participating
nodes in the node selection stage, the more efficient the op-
timization would be. In the second approach only a fixed
number of extra nodes are used in the node selection stage.
Therefore, its complexity is lower than that of the first ap-
proach. Since this simplicity is at the expense of lower qual-
ity, it is suggested for communication of rather short data
messages.

Our investigations proved that the proposed algorithm
outperforms its previous versions in terms of energy effi-
ciency and life-time.
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