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Abstract
During the last years, mobile phones more and more have come into the focus of interest of activity recognition research.
The research community is faced with two system problems: First, how to separate and schedule activity recognition
functionality, and second, how to minimize power consumption. In this paper we (a) propose the use of a modular
concept with activity driven scheduling between modules to allow a fine grained and thus effective scheduling of activity
recognition functionality and (b) present a sleep time scheduling mechanism that inserts sleeping phases to reduce power
consumption. The paper presents the implementation and evaluation of the system on a mobile phone.

1 Introduction

Activity recognition has been a relevant research topic for
many years now (e.g. [1], [2], [3], [4] and [5]), but with
mobile phones providing sensors and sufficient calculation
power to compute the recognition on the device itself, the
topic becomes relevant for the common user. Many appli-
cations can benefit from activity and context information,
in order to improve the handling of the device through the
user. But when activity recognition is always running in
the background to provide information to applications, the
issue of shortened battery runtime becomes relevant.
There are two ways of dealing with that problem, one is
to reduce the calculation effort for the activity recognition
process, the other one is to use the activity information to
schedule the recognition process itself. Even though we
developed a schedulable modular recognition architecture
that reduces the calculation effort significantly (< 3.3%
processor load on average for the recognition of ten ac-
tivities) without loss of accuracy or reducing the amount
of recognized classes, we still experienced a significant
reduction of battery runtime with the recognition process
running.
Since usually activities do not change very frequently, but
the sensors provide data for many classifications per sec-
ond, a sleep time scheduling algorithm could reduce the
power consumption caused by the activity recognition.
Also, when the activity recognition is totally switched off
for certain periods, the power saving mechanisms native to
the phone can be reactivated.
In the field of activity recognition several articles on the
topic of scheduling have been published. In [6] the trade-
off between sampling rate, accuracy and power consump-
tion was analyzed for the eWatch sensor platform, which
is equipped with an accelerometer, a microphone, a light
and temperature sensor. The analysis was based on activ-

ity recognition of seven different classes. Also, a Markov
chain was used to predict the activities and based on that
information an exponential backoff sampling strategy was
used. The drawback here is, that due to user behavior the
Markov chain has to be identified, while our method does
not need any prior knowledge or model. In [7] a decision
tree classifier is used to select the sensors necessary to de-
termine the system state. This method is not applicable in
our case, since we process only one sensor stream in each
classification chain and we consider the chain to be a black
box, for reasons of flexibility. A dynamic sensor selection
to reduce power consumption in activity recognition is also
done in [8]. Power and accuracy trade-offs for sound based
context recognition are analyzed in [9], where no sugges-
tions for scheduling the recognition are made. All of these
published scheduling techniques have in common that they
need a special architecture or algorithm for the scheduling
to be effective.
The remainder of this paper is structured as follows: First,
we introduce a scheduling technique for modular activity
classification that can be used for any modular classifier
structure. Second, a sleep time scheduling mechanism is
explained, which also can be applied to any activity classi-
fication method, because it considers the activity classifica-
tion as a black box and just uses the classification outcome
to calculate the sleep time. In this paper, we apply the
novel and yet simple scheduling techniques to our modu-
lar activity recognition system, which we find has several
advantages over other classification mechanisms already.

2 Why Modular Activity Recogni-
tion?

For the recognition of activities we use a modular classi-
fier architecture. The modularity has the following benefits



over a monolithic architecture:

1. Schedulable Units: Modules allow us to schedule
between activity recognition functionality and thus
optimize and minimize the effort of the system spent
for recognition.

2. Calculation effort: In [10] it is proved that with a
infinite set of rules a FIS can reach infinite accuracy.
With non-hypothetical machines, accuracy will al-
ways be finite. In [11] it was shown, that the relation
between number of rules and accuracy of projection
is not linear, but was assumed to be logarithmic.
This restricts the implementable recognition func-
tionality on a mobile device with limited processing
power and battery capacity. But the users have vari-
ous demands on what activities and contexts should
be recognized, and therefore the amount of classes
to be recognized can not be limited to a reasonable
calculation effort. It was shown in [11] that a divide
and conquer approach can reduce this problem.

3. Flexibility: Different users have different demands,
behavior and environments. Therefore, personaliza-
tion on the respective user is necessary to achieve
reasonable recognition results. Also, different envi-
ronments result in different patterns, a fact that also
requires an adaption if these patterns change. Also,
with a monolithic classifier structure, the search
space for any heuristic is much bigger than with a
modular structure, where only certain modules can
separately be personalized or adapted onto changes
[12].

4. Expandability: There are certain activities nearly
every user performs, while others are specific to a
certain group or individual. If new activities need to
be recognized with a monolithic classifier structure,
the whole classifier needs to be changed. A modular
classifier structure offers extensibility [13], without
the need for new identification of the whole set of
modules.

5. Meta semantic: One of the biggest issues when per-
forming activity recognition with mobile devices is,
that the position of the device on the user (e.g. in
trousers pocket or holding in hand) or in the envi-
ronment (e.g. lying on table or lying in car) is un-
known. Using a modular recognition structure, each
module can recognize classes, which are specific to
a certain context, e.g. a location. If then only one
module is active at one point in time, this modules
"meta semantic" indicates the location.

These points make a strong argument for using a modular
classifier structure for activity recognition on mobile de-
vices. In the following, we explain our modular classifier
structure and show how it can be used in a scheduling al-
gorithm to reduce energy consumption.

3 Activity Recognition Module
The process of deriving a class identifier from raw sensor
values consists of several steps. The first step is the fea-
ture extraction, which calculates the relevant features for
classification and is a first dimensionality reduction. Possi-
ble feature extraction methods for acceleration sensor mea-
surements are mean and variance values, peak extraction,
etc. For audio usually a fourier transformation is used with
an additional dimensionality reduction such as mean and
variance again, frequency centroid or a principal compo-
nent projection. For activity recognition we solely use an
accelerometer sensor and the features mean and variance,
since they are expressive and efficient to calculate.
The next step of processing is a mapping algorithm, that
reduces the dimensionality of the features to only one di-
mension which is classifiable. There are several methods
for the mapping possible, such as Neural Networks (NN),
Support Vector Machines (SVM), Bayesian Networks or
Hidden Markov Models (HMM). For activity recognition
in this paper we used a Recurrent Fuzzy Inference System
for many reasons, of which the most significant ones are
robustness [14] and the support for a reliability measure,
that can be used to improve recognition rates.
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Figure 1: Activity recognition processing queue.

The last step is the classification, in which the one-
dimensional outcome value of the mapping is assigned to
a discrete class identifier. This assignment is also done
fuzzily, so the outcome is not only a class identifier, but
also a membership value identifying the reliability of the
classification process. This membership value is used in a
last step to separate the reliable from the unreliable classi-
fications, thus increasing accuracy of the recognition pro-
cess.
Step two and three are summarized in a classification mod-
ule. Instead of just using one classification module, many
are used in a dynamic queue.

4 Scheduling of Activity Recognition
We introduce two mechanisms of scheduling, one is the
scheduling of the modules in the activity recognition, the
other is a sleep time scheduling of the whole recognition
process. With the modular structure of our activity clas-
sification, a dynamic queue of classification modules is
possible, in which only one module is active at each point



in time. This reduces the calculational effort significantly.
The sleep time scheduling enables the activity recognition
process to use the operating systems power savings mech-
anisms. When a sleep phase is scheduled, the operating
system can take over and go into a power saving mode it-
self.

4.1 Dynamic Queue for Activity Recognition
Module Scheduling

Each of the activity classification modules does not only
recognize the respective classes, but also a so-called com-
plementary class. If this complementary class is rec-
ognized, another module gets activated. In this manner
the complementary class indicates whether a classifica-
tion module can or cannot classify the feature vector input.
More details on the complementary class can be found in
[11].
All classification modules are organized in a dynamic
queue. If the active module classifies onto its complemen-
tary class, the next module in the queue is activated, and so
on. The first module in the queue that can classify the fea-
ture vector input (i.e. the first module that classifies on a
class different from the complementary one) is then sorted
in front of the queue. Only the first module in the queue is
active and therefore only a fraction of the overall activity
recognizers needs to be calculated. This reduces calcula-
tion effort and therefore power consumption. For better
understanding of the dynamic queue of classification mod-
ules, an example is displayed in figure 2 and described in
the following:
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Figure 2: State of modular classifiers in queue at time
t = 0 and t = X

1. The classification modules queue starts at time t = 0
(before classification of first feature vector) where
the modules are sorted according to their module
number. Only the first module in the queue is active
and gets to classify the incoming feature vectors.

2. At a time t = X the incoming feature vector gets
classified by the first module onto the complemen-
tary class. This indicates, that this module can not
classify this feature vector.

3. The next module in the queue gets now activated and
tries to classify the same feature vector. In this ex-
ample it succeeds and classifies the feature vector on
a class different from the complementary one. This
module number two now gets put first in queue.

4. In the next time step (new feature vector) the first
classifier module is module number two. This mod-
ule remains being first in queue until it classifies onto
the complementary class.

Due to misclassification or feature vectors of classes that
can not be recognized by any of the modules it is possible,
that every module in the queue classifies onto the comple-
mentary class. In this case, the overall output of the queue
is the complementary class and the order of the modules in
the queue remains the same as before.

4.2 Sleep Time Scheduling Algorithm for
Activation of Activity Recognition

With our modular activity recognition architecture, there
are two entities possible for input of the sleep time schedul-
ing algorithm. One is the frequency of class changes in
successive classifications, the other one is the frequency of
module alteration in the dynamic queue. Since our mod-
ular recognition architecture is different from the gener-
ally used monolithic methods, we use and evaluate the fre-
quency of class changes. This method should therefore
be applicable to nearly any activity classification method,
since the whole classification process is considered a black
box and only the sequence of classification outcomes is
used for the sleep time scheduling.
As mentioned before, the sleep time scheduling algorithm
is very simple, but effective, since it enables the recogni-
tion process to use the devices power savings mechanisms
again. With an activity recognition that is always running
without any pauses, the power savings mechanisms, such
as a suspend mode, can never be active.
After each activity classification it is checked if the classi-
fication has the same result as the classification before. If
the classification result is the same, a counter is increased
and a method is called that initiates a sleep phase. This
sleep phase is an integer value of the time which is needed
for sampling a window size of sensor measurements. Since
the calculation time for one classification and feature vec-
tor calculation is less than for sampling one window size



of sensor measurements, this method does not result in the
missing of sensor values if no sleep phase is scheduled.
If the old and the current detected activity class are not the
same, the counter is set to zero and therefore no sleep phase
is executed.

5 Evaluation
For evaluation we used a OpenMoko Freerunner phone,
which is equipped with two 3-D accelerometer sensors, a
400MHz ARM processor (no floating-point unit), a WiFi
802.11 b/g transceiver and a 1200mAh Li-Ion battery. The
evaluation includes measurements of the battery capacity
and classification results of the activity recognition with
and without scheduling. Also, the percentage of detected
activity events is measured. An activity event in this man-
ner is the period, where only one activity is performed. The
activity event starts when the first classification should rec-
ognize a new activity and ends when the last classification
of this event is done before a new activity starts. An ex-
ample of activity events is given in figure 3. To have an
upper limit, battery measurements were also taken without
running the activity recognition.
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Figure 3: Example of activity events for three activity
classes with correct (x) and incorrect (∗) classifications.

5.1 Evaluation Setting
To have comparable results for an activity recognition with
and without sleep time scheduling, a data replay method
was implemented. Also, with the capability of relaying a
data set, several intervals of activity class changes could
be tested. This is necessary for two reasons: (1) the de-
pendability of the sleep time scheduling on the frequency
of class changes and (2) the interference of the sleep time
scheduling with the recurrence of the classifier. Since the
acceleration sensor and its sampling through the controller
needs energy too, the replay mechanism intervenes after
the sensor measurement and before the feature extraction.
Here, instead of the current acceleration measurement the
recorded measurement is inserted.
For evaluation we used a data set of ∼ 72 minutes for
nine different activity classes of one person. The activity
classes which were used are typical to mobile phones. The
activity classes are grouped together in the different mod-
ules according to the location they occur and the amount of

movement, where the semantic is called conditional con-
text. All the activities, modules and conditional contexts
are displayed in table 1.

Conditional Context Class Class Classifier
Context No. Module

Phone in users user is sitting 1
trouser pocket: user is standing 2 M1

no movement user is lying 3
user is walking 4
user is climbing stairs 5 M2

movement user is cycling 6

Phone in users just holding 7
hand: talking on phone 8 M3

typing text message 9

Table 1: Conditional contexts, classes and classifier mod-
ules for the acceleration sensor.
Besides the replay method, there are some other issues
in the evaluation method. One is, that the distribution of
the operation system (Debian GNU/Linux neo 2.6.32v20)
currently running on the evaluation device does not allow
sensor measurements, calculations or active SSH sessions
when the phone is in a power saving mode. This includes
the inactive display, too. To make a remote evaluation pos-
sible, in which a normal keyboard could be used and the
results could be displayed on a normal sized screen, the
activity recognizer ran remotely over a SSH session.
Since the sleep time scheduling results in smaller to big-
ger leaps forward in time, one question to be answered in
the evaluation is if activity events could be detected or not.
Also, with the filtering on the reliability measure, which
improves the overall recognition accuracy, the amount of
classifications are reduced. Here, a correctly detected ac-
tivity event could be filtered out and therefore the thresh-
old determines also how many activity events could be de-
tected. This is the case for both methods of activity recog-
nition, the sleep time scheduled and the one where only
the modules are scheduled. To especially evaluate this cir-
cumstance, the replayed test data is randomized according
to slices of 80, 240 and 400 data pairs of sensor measure-
ments, which leads to 10, 30 and 50 classifications (8 sam-
ple window size) of the same activity in a row. Here an
integer multiple of the window size for feature extraction
was chosen, since no window should include data of two
different activities. In mean there are 5.75 classifications
per second, which results in activity periods of ∼ 1.74,
∼ 5.22 and ∼ 8.7 seconds.
When measuring the power consumption we have to deal
with imprecise information which is provided by the op-
eration system of the device. The OS only provides inte-
ger measurements of the percentage of remaining battery
power. Here a more precise percentage or remaining mAh
would be desirable. Nevertheless, we can show, that the
scheduled classification lowers the energy consumption of
the activity recognition.



5.2 Activity Recognition without Sleep Time
Scheduling

First, the accuracy and energy consumption of the activ-
ity recognition without sleep time scheduling and only
scheduling of the modules is analyzed. For the percent-
age of correct classifications the classification without the
sleep time scheduling is the upper limit. The sleep time
scheduled classification can only be as good as this up-
per limit. For the measurement of power consumption the
activity recognition with modular scheduling is the lower
limit, where the recognition where also the sleep time is
scheduled only can be better.
Since the sequence size of the activity events has no im-
pact on the energy consumption of the activity classifica-
tion with only module scheduling, we measured the same
remaining battery capacity of 74% for all three trial runs.
Compared to the measurements of power consumption
(80% battery power remaining) when no activity recog-
nition is done, the module scheduled activity recognition
consumes 6pp (percentage points) more of the capacity.
The question is now, how many activity events could be de-
tected and what is the accuracy of the recognition? Since
the recognition results of the activity recognition for the
event period length with 30 classifications in a row is with
78.2% not very high, a filtering of the classifications on
the reliability measure is done. But this filter reduces the
amount of classifications passed through to the next level
of processing or the application. The trade-off here is how
many activity events could be detected. For the three tri-
als the percentage of detected events is plotted against the
accuracy of classification in figure 4.

Figure 4: Graphs for percentage of successfully detected
activity events (gray lines) and correct classifications
(black lines) for different filter thresholds τ = 0, .., 0.98
for activity recognition without sleep time scheduling.
The different sequence periods for equal activities are 10
(x marker), 30 (+ marker) and 50 (� marker) possible clas-
sifications.

An activity event is detected if in a period of data pairs of
one activity class at least one classification is the activity
that actually happened. As suspected, the higher the fil-
ter threshold is, the less activity events could be detected.

Here a tradeoff between classification accuracy and per-
centage of detected events has to be found, which is in our
opinion the threshold where the two graphs intersect. But
with different event periods, there are different intersec-
tion points, so we tend to chose the threshold τ = 0.45
of intersection for the smallest event period of 10 possible
successive classifications. This is in our opinion the worst
case scenario and for normal human behavior the lower
limit, because the human activity periods are normally not
smaller than a second.
For this threshold of τ = 0.45 the confusion matrix for an
event period length of 30 classifications is shown in table
2. Most of the classes have reasonable recognition rates
of close to or above 90%. Other classes could be recog-
nized with over 80% accuracy, which is also an acceptable
rate. Only one class (sitting, class no.1) has low recogni-
tion rates with only 63.5% correct classifications.

1 2 3 4 5 6 7 8 9
1 63.5 1.9 0.6 2.5 2.0 1.3 10.7 0.4 3.1
2 1.5 82.1 0.6 0.5 1.1 0.2 1.0 1.1 1.4
3 0.0 0.4 92.9 0.1 0.0 0.0 0.0 0.0 0.0
4 0.0 1.3 0.2 91.3 5.4 2.0 0.1 1.3 0.3
5 1.3 0.8 0.5 3.4 89.0 1.5 0.1 0.3 0.7
6 0.0 0.0 0.0 1.0 0.2 93.6 0.0 0.0 0.0
7 32.2 6.4 1.1 1.0 1.6 1.0 86.5 0.3 1.9
8 1.1 5.9 4.0 0.1 0.5 0.3 1.3 96.7 1.2
9 0.3 1.2 0.0 0.0 0.2 0.1 0.2 0.0 91.4

86.6 85.6 59.2 72.2 79.9 90.3 85.0 96.7 83.4

Table 2: Confusion matrices for activity recognition with-
out sleep time scheduling for filter threshold τ = 0.45 with
87.5% overall classification accuracy.
As can be seen, the activity holding (class no.7) strongly
interferes with the class sitting (class no.1), which is due
to the very similar position the phone has in the evaluation
users pants pocket compared to holding the phone in the
hand. This two classes are hardly separable with the avail-
able sensor patterns and therefore, the classifier decides for
one or the other class. In this case the class holding is fa-
vored. To have a comparison to the classification results
with a higher threshold of τ = 0.8 the confusion matrix is
shown in table 3. Here nearly all classes were recognized
with over 90% accuracy.

1 2 3 4 5 6 7 8 9
1 68.0 0.7 0.0 1.9 1.5 0.7 5.9 0.2 3.0
2 1.1 89.3 0.5 0.2 0.9 0.0 0.4 0.6 0.2
3 0.0 0.0 96.8 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.2 0.0 94.7 3.3 0.6 0.2 0.5 0.0
5 0.9 0.7 0.4 1.7 93.5 0.8 0.0 0.1 1.2
6 0.0 0.0 0.0 0.7 0.0 97.3 0.0 0.0 0.0
7 28.9 5.7 0.4 0.5 0.4 0.4 92.3 0.1 1.6
8 0.9 3.0 2.0 0.2 0.4 0.1 1.0 98.5 0.7
9 0.2 0.4 0.0 0.0 0.0 0.0 0.2 0.0 93.3

51.9 69.1 53.1 31.0 41.1 80.7 45.7 91.9 38.4

Table 3: Confusion matrices for activity recognition with-
out sleep time scheduling for filter threshold τ = 0.8 with
91.5% overall classification accuracy.



5.3 Activity Recognition with Sleep Time
Scheduling

Due to the structure of the activity classifier, the upper limit
of a recognizer with only module scheduling can not be
reached through a recognizer with also sleep time schedul-
ing. This is because the modular classification includes
a recurrent edge, where the output of the classification at
time t is fed back at t+1. With this feedback a high recog-
nition rate, a robust classification and the gain of a reliabil-
ity measure is possible, but the recurrence interferes with
the sleep time scheduling. Here the circumstance that with
a sleep time scheduled classifier the last classification of
time t that is fed back at time t + n is not always the pre-
ceding pattern nor activity. This is especially the case, if
the classification at t is originating in one activity and the
sleep time scheduler activates the recognition at t+ n in a
different activity.

Figure 5: Graphs for percentage of successfully de-
tected activity events (gray lines) and correct classifi-
cations (black lines) for different filter thresholds τ =
0, .., 0.98 of sleep time scheduled activity recognition. The
different sequence periods for equal activities are 10 (x
marker), 30 (+ marker) and 50 (� marker) possible clas-
sifications.

The plots of the detected activity events and the accuracy
of classification are shown in figure 5, again for differ-
ent event periods and filter thresholds. As mentioned be-
fore, the graphs are generally lower than without sleep time
scheduling, but are similar in shape. The worst results are
for the smallest event period of 10 successive classifica-
tions, where with a maximum sleep period for the sleep
time scheduled classification, no two classifications are of
the same activity.
The remaining battery capacity is also, for the trial of a
period length of 10 successive classifications, with 74%
the lowest. This is the same energy consumption as for a
unscheduled activity recognition. Here the recurrence sta-
bilizes the recognition mostly at the end of a period, which
results in oscillating classifications and therefore nearly no
sleep phases. A more precise battery capacity measure-
ment could show marginal improvements.
For the trial of 30 successive classifications periods, the

energy consumption of the activity recognition improves
by 2pp compared to the recognition without sleep time
scheduling. The third trial with 50 samples activity event
length has the highest remaining capacity of 78% and only
2pp more battery consumption than without any activity
recognition at all.
Again, for the second trial (20 classifications), the confu-
sion matrices for filter thresholds of τ = 0.45 (left) and
τ = 0.8 (right) are shown in table 4 and in table 5.

1 2 3 4 5 6 7 8 9
1 57.9 1.8 2.2 7.5 6.7 5.6 21.9 0.9 8.4
2 6.7 77.9 0.5 2.8 1.6 0.0 1.9 1.2 1.0
3 0.0 0.3 88.1 0.0 0.0 0.0 0.0 0.0 0.0
4 0.4 3.8 1.1 77.6 12.4 2.1 0.0 1.5 0.0
5 0.8 1.8 2.2 9.3 73.3 1.7 0.4 0.0 0.7
6 0.0 0.0 0.0 0.6 0.6 88.2 0.0 0.0 0.0
7 33.5 6.8 2.2 1.9 3.8 1.4 73.6 0.3 2.7
8 0.8 6.2 3.8 0.3 1.6 1.0 1.9 96.1 1.0
9 0.0 1.5 0.0 0.0 0.0 0.0 0.4 0.0 86.2

71.3 79.6 51.5 67.2 64.8 79.5 75.5 93.5 75.0

Table 4: Confusion matrices for sleep time scheduled ac-
tivity recognition for filter threshold τ = 0.45 with 79.9%
overall classification accuracy.

1 2 3 4 5 6 7 8 9
1 54.7 0.4 1.4 7.0 6.7 2.6 10.5 0.9 9.6
2 2.7 88.4 0.7 0.0 1.3 0.0 0.8 0.6 1.8
3 0.0 0.0 91.8 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.8 0.0 86.0 10.7 0.4 0.0 0.3 0.0
5 1.4 0.4 1.4 4.7 74.5 0.9 0.0 0.0 0.0
6 0.0 0.0 0.0 0.8 0.7 94.9 0.0 0.0 0.0
7 39.9 5.6 2.1 0.8 4.0 0.9 85.5 0.0 3.5
8 1.4 3.2 2.7 0.8 2.0 0.4 2.4 98.1 0.9
9 0.0 1.2 0.0 0.0 0.0 0.0 0.8 0.0 84.2

41.6 58.7 40.7 27.0 30.7 64.8 35.3 89.6 28.8

Table 5: Confusion matrices for sleep time scheduled ac-
tivity recognition for filter threshold τ = 0.8 with 84.2%
overall classification accuracy.
The accuracy results are lower than those of an activity
recognition with only module scheduling, but with a filter
threshold of τ = 0.8 many classes can be recognized with
over 80% accuracy and more.

5.4 Evaluation Summary and Discussion
In the evaluation a direct correlation and therefore a trade-
off between classification accuracy and activity event de-
tection percentage could be found. A sleep time schedul-
ing even tightens this problem, since due to the recurrence
of the classifier, the recognition rates are lowering, and
the scheduling reduces the classification periods to detect
the events. Also, the filtering, used to eliminate the un-
reliable classifications and therefore further improving the
recognition accuracy, lowers the amount of detected activ-
ity events again. The trade-off for the usage of the sleep
time scheduling is therefore the accuracy of activity event
detection and recognition against the power consumption
of the activity recognition. All evaluation results are shown
together in table 6.



τ
sleep time scheduling module scheduling no recog.

seq. % det. % class. % rem. % det. % class. % rem. % rem.
size seq. acc. cap. seq. acc. cap. capacity

10
0 65.3 57.8

74
79.4 62.7

74 80

0.45 59.8 70.3 75.7 74.6
0.8 47.6 75.7 63.8 79.8

30
0 82.6 68.8

76
88.0 78.2

0.45 80.7 79.9 87.4 87.5
0.8 70.5 84.2 85.0 91.5

50
0 83.8 70.1

78
86.3 80.0

0.45 82.1 83.1 86.0 89.1
0.8 75.4 87.7 85.2 92.4

Table 6: Comparison of results for module scheduled,
module and sleep time scheduled and no activity recogni-
tion. Table includes results and measurements for different
activity sequence sizes and filter thresholds of percentage
of detected activity events, correct detected activities and
remaining battery capacity.
Especially the measurements of remaining battery capacity
are too coarse grained to make general assumptions about
the sleep time scheduling algorithm. It is expected, that
even for the smallest event size of 10 successive classifica-
tions, the sleep time scheduled activity recognition is lower
in energy consumption. Also, the evaluation setting where
it is not possible to use the phone’s sleep cycles distorts the
results. If it would be possible to use the phones standby
mode in between the sleep time scheduled activity recog-
nition, the power consumption could significantly lowered
compared to an "always on" recognition. At this point we
were only able to evaluate the power savings for less CPU
usage due to the sleep time scheduling, whereas the lion’s
share would be the utilization of the suspend modes of the
mobile device. This is clearly an aspect to validate in fu-
ture work.

6 Summary and Future Work

We have shown in this paper, that even very simple
scheduling algorithms can reduce the power consumption
of activity recognition. First the modular activity recog-
nition scheduling was introduced and its benefits over a
monolithic structure. This modular architecture has low
computational effort for the recognition of a fairly high
amount of classes. With this modular activity recognition
scheduling we are able to reduce the power consumption
to only 6pp (percentage points) more than without recogni-
tion. The sleep time scheduling algorithm further reduces
the power consumption for activity recognition. The eval-
uation has shown the trade-offs between accuracy, activity
event detection and sleep time scheduling.
In future work, further reduction of power consumption
will be analyzed. Especially when the sleep time schedul-
ing can be used to utilize the mobile device’s suspend
modes, little to no impact at all on the battery lifetime
caused by the activity recognition should be possible.

References
[1] A. Schmidt, K. A. Aidoo, and A. Takaluoma, et al.,

“Advanced interaction in context,” in HUC’99, ser.
LNCS, 1999.

[2] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activ-
ity recognition from accelerometer data on a mobile
phone,” in Proceedings of the IWANN ’09. Springer,
2009, pp. 796–799.

[3] N. Györbíró, A. Fábián, and G. Hományi, “An activ-
ity recognition system for mobile phones,” MONET,
2009.

[4] T. S. Saponas, J. Lester, and J. E. Froehlich, et al.,
“ilearn on the iphone: Real-time human activity clas-
sification on commodity mobile phones,” CSE Tech-
nical Report, 2008.

[5] L. Bao and S. S. Intille, “Activity recognition
from user-annotated acceleration data,” PERVASIVE,
2004.

[6] A. Krause, M. Ihmig, E. Rankin, D. Leong, S. Gupta,
D. Siewiorek, A. Smailagic, M. Deisher, and U. Sen-
gupta, “Trading off prediction accuracy and power
consumption for context-aware wearable comput-
ing,” International Symposium on Wearable Comput-
ing (ISWC), 2005.

[7] A. Benbasat and J. Paradiso, “A framework for the
automated genaration of power-efficient classifiers
for embedded sensor nodes,” SenSys’07, 2007.

[8] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella,
D. Roggen, L. Benini, and G. Troester, “Activity
recognition from on-body sensors: Accuracy-power
trade-off by dynamic sensor selection,” European
Workshop on Sensor Networks (EWSN’08), 2008.

[9] M. Staeger, P. Lukowicz, and G. Troester, “Power and
accuracy trade-offs in sound-based context recog-
nition systems,” Pervasive and Mobile Computing,
2007.

[10] L. X. Wang, Adaptive Fuzzy Systems and Control.
Prentice-Hall, Englewood Cliffs, 1998.

[11] M. Berchtold, T. Riedel, M. Beigl, and C. Decker,
“Awarepen - classfication probability and fuzziness in
a context aware application,” Ubiquitous Intell. and
Comp., LNCS, 2008.

[12] M. Berchtold, T. Riedel, K. van Laerhoven,
and C. Decker, “Gath-geva specification and ge-
netic generalization of tsk fuzzy models,” Sys.,
Man and Cyb. (SMC08), IEEE, 2008. [On-
line]. Available: http://www.ibr.cs.tu-bs.de/users/
berch/publications/SMC08.pdf

http://www.ibr.cs.tu-bs.de/users/berch/publications/SMC08.pdf
http://www.ibr.cs.tu-bs.de/users/berch/publications/SMC08.pdf


[13] M. Berchtold, M. Budde, H. Schmidtke, and
M. Beigl, “An extensible modular recognition con-
cept that makes activity recognition practical,” Ger-
man Art. Int. (KI’10), LNAI, 2010.

[14] M. Berchtold and M. Beigl, “Increased robustness
in context detection and reasoning using uncertainty
measures - concept and application,” Ambient Intell.
(AmI’09), LNCS, 2009.


	Introduction
	Why Modular Activity Recognition?
	Activity Recognition Module
	Scheduling of Activity Recognition
	Dynamic Queue for Activity Recognition Module Scheduling
	Sleep Time Scheduling Algorithm for Activation of Activity Recognition

	Evaluation
	Evaluation Setting
	Activity Recognition without Sleep Time Scheduling
	Activity Recognition with Sleep Time Scheduling
	Evaluation Summary and Discussion

	Summary and Future Work

