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Abstract—This paper introduces a fuzzy inference system,
based on the Takagi-Sugeno-Kang model, to achieve efficient
and reliable classification in the domain of ubiquitous computing,
and in particular for smart or context-aware, sensor-augmented
devices. As these are typically deployed in unpredictable envi-
ronments and have a large amount of correlated sensor data, we
propose to use a Gath-Geva clustering specification as well as a
genetic algorithm approach to improve the model’s robustness.
Experiments on data from such a sensor-augmented device
show that accuracy is boosted from 83% to 97% with these
optimizations under normal conditions, and for more challenging
data from 54% to 79%.

I. INTRODUCTION

Context-awareness and smart devices have always accom-
panied the vision of ubiquitous computing since its postulation
by Weiser [1]. Motivated by our work in this area, we identify
two specific challenges in fuzzy classification that are typical
(but not limited) to this application domain.

The first problem which we address in this paper concerns
the specification of fuzzy classifiers. While classifying data
using fuzzy inference systems (FIS) is also common in other
areas, the specification of such systems meets special chal-
lenges. Because ubiquitous computing research focusses on
unpredictable environments and the input features are mani-
folds, it is difficult to specify classification from prior domain
knowledge. Furthermore, the final classifiers are targeted for
execution on resource-constrained embedded devices like the
AwarePen artifact [2], which we chose for this paper’s case
study. This condition makes automatically constructed Takagi-
Sugeno-Kang Fuzzy Models a perfect match: Using annotated
data, they can be trained and adapted offline, and executed
efficiently on the smart item’s embedded platform. In previous
work, we successfully applied automatically constructed TSK-
FIS in this application domain using multivariate subtractive
clustering for construction [3]. One challenge is the fact that
many classifiers depend on the correlation of features in the
input, with high dimensionality and often a huge variance.
We will show that non-covariant clustering will result in a
high number of cluster to cover the input space, and con-
sequently rule executions at runtime, which is problematic
both for execution on smart items, as well for interpretability.
A Gustafson-Kessel clustering algorithm [4] would provide
covariant membership functions, but the clustering has some
disadvantages: An adaption to different cluster densities is not
possible, a constant cluster volume is recommended, or the
volume needs to be defined by hand. In this paper we approach

this problem by proposing a novel construction algorithm
for TSK models using a Gath-Geva clustering. A modified
Gath-Geva clustering was already proposed in Abonyi et al
[5]. Their modified clustering algorithm does not rely on
the transformation of the input domain, thus preserving the
interpretability of the resulting TSK model. They do not
take the correlation of the inputs into account, which is not
preferable in our case. We need to capture the correlation of
the inputs through the multidimensional covariant membership
functions for our particular classification problem. Having a
interpretable model on input dimension level is in our case
not necessary, just a interpretation of rules per class is needed.

The second of the before mentioned challenges in using
automatically constructed FIS in the field of ubiquitous com-
puting is, that systems tend to overly adapt to the training
data. Smart artifacts like AwarePen are typically used by
many different users in a number of different environments.
Training, however, requires annotated data and can only be
done involving a limited number of people and is often done
in few controlled environments for pratical reasons. We argue
that this shortage of adequate training data, which is intrinsic
to the ubiquitous computing domain, can be overcome by a
generalization of the FIS model. As the second part of our
construction process, we propose a genetic algorithm approach
to remove conflicting over-specifications by a generalization of
the TSK FIS.

Already in the work of Setnes et al [6] a genetic algorithm is
used to optimize the antecedent and the consequent variables of
TSK models. They use a supervised fuzzy clustering algorithm
to obtain the rules of the model. Further work of Roubos
and Setnes [7] again adopts a genetic algorithm for parameter
tuning and a similarity measure to simplify the rules of the
FIS. A tuning of variables is in our case not necessary, since
the used Gath-Geva clustering achieves a good approximation
of the covariant training data. The genetic optimization in our
case is done upon a static topology of an TSK-FIS without
tuning the variables of the fuzzy system.

The approach of Chou et al [8] deals with incomplete data
via a combination of fuzzy c-means (FCM) and Dempster-
Shafer theory. Their aim is to classify data records with missing
values, therefore they use the FCM to get an initial degree of
belief for complete data, and use the Dempster-Shafer theory
to make a final decision of the class to which the incomplete
data should belong to. This approach is not optimal in our
case, since at construction time of the TSK-FIS the data for



classification is complete. In the further use of the classifier
we deal with data that can be in nature contradicting to the
classifier rules, or at least to some of the rules dimensions.
Therefore, a classifier that can be generalized at runtime is
required, so that unknown data does not remain contradicting,
without changing the topology of the classifier or adapting to
the new data. Adapting the classifier onto the new data could
lead to suboptimal classification abilities for the normal data

First, we describe our proposed Fuzzy Inference System
(FIS) for classification in section II which is based on the
Takagi-Sugeno-Kang FIS. This is followed in section III with
the description of our specification approach, and two applica-
tion examples in section IV, which serve as evaluation of our
model. The last section sums up our conclusions and briefly
describes the future steps in this research.

II. FUZZY INFERENCE SYSTEM FOR CLASSIFICATION

A. Takagi-Sugeno-Kang-FIS

Takagi, Sugeno and Kang [9][10] (TSK) fuzzy inference
systems are fuzzy rule-based structures, which are especially
suited for automated construction. Within a TSK-FIS, the con-
sequence of the implication is not a functional membership to
a fuzzy set, but a constant or linear function. The consequence
of the rule j depends on the input of the FIS:

fj(−→v t) :=
n∑

i=1

aijvi + a(n+1)j (1)

The linguistic equivalent of a rule j is formulated accordingly:

IF µ1j(v1) AND µ2j(v2) AND .. AND µnj(vn) THEN fj(−→v t)
(2)

The membership functions of the rule are non-linear Gaussian
functions. The antecedent part of the rule j determines the
weight wj accordingly:

wj(−→v t) :=
n∏

i=1

µij(vi) (3)

The projection from input −→v t := (v1, v2, .., vn) onto the
classifiable one-dimensional set is a weighted sum average,
which is a combination of fuzzy reasoning and defuzzification.
The weighted sum average is calculated according to the rules
j = 1, ..,m as follows:

S(−→v t) :=

∑c
j=1 wj(−→v t)fj(−→v t)∑c

j=1 wj(−→v t)
(4)

B. TSK-FIS with Covariant Membership Functions

In ubiquitous computing we are mostly dealing with highly
correlated data. With multivariate membership functions (MF)
the data cannot be covered sufficiently, therefore more func-
tions are needed. Since multivariate MF cannot adapt to the
shape of covariant data, the data is not accurately represented
by the MF, and therefore a separation of different classes
results in a bigger error. On the other hand, multidimensional
covariant MF’s are not as intuitively interpretable as seperate

multivariate MF’s. In our case only an interpretation of the
model on rule level is needed.

We opt for a covariant MF, which results in less rules and
smaller error. The covariant MF is defined accordingly:

µj(−→v t) := e−
1
2 (
−→v t−−→mj)Σ

−1
j (

−→v t−−→mj)
T

(5)

With the covariant MF the whole input of each rule is handled
by one MF, which results in a simplified rule:

IF µj(−→v t) THEN fj(−→v t) (6)

The whole antecedent part of each rule was multiplied with
the usual TSK-FIS (eqn. 3) to get the respective weight, but
with the covariant MF’s the function is already the weight.
The resulting formula for the covariant TSK-FIS is defined, as
follows:

S(−→v t) :=

∑m
j=1 µj(−→v t)fj(−→v t)∑m

j=1 µj(−→v t)
(7)

In further evaluations and analysis of this paper, we will
refer to the covariant TSK-FIS defined in equation 7.

C. Fuzzy Classification

The outcome of the TSK-FIS mapping needs to be assigned
to one of the classes the projection should result in. This
assignment is done fuzzy, so the result is not only a class
identifier, but also a membership identifying the confidence of
the classification process. Each class identifier is interpreted
as a triangular shaped fuzzy number. The mean of the fuzzy
number is the identifier itself, with the highest membership
of one. The crisp decision, which identifier is the mapping
outcome, is carried out based on the highest membership to one
of the class identifiers. The overall output of the FIS mapping
and the classification is a tuple (C, µC) of class identifier, and
the membership to it.

III. MACHINE LEARNING ALGORITHMS

A. Specification of TSK-FIS with Covariant Membership
Functions

For the automatic specification of the fuzzy inference
system a combination of clustering algorithms and linear
regression was used. The clustering was done upon a training
data set, which was separated according to the class each
sample belongs to. Due to this class specific clustering, every
rule resulting from each cluster is clearly associable with the
class it is resulting from. This was done on the one side to
make the resulting FIS interpretable, and on the other side, to
optimize on class specific features.

1) Subtractive Clustering: The biggest advantages of Gath-
Geva clustering [11] are the adaption on covariant shapes
and various cluster densities, which are not easy to realize
with Gustafson-Kessel clustering [4]. Although, two problems
with the clustering algorithm are arising from the usage in an
automatic FIS identification: First, the algorithm needs to know
the amount of clusters, and second, for a random initialization
it might not always converge to the optimal cluster centers.



Thus, a method is needed to determine the initial clusters
centers.

Mountain clustering [12] may be used for initialization,
but is highly dependent on the grid structure. We opt for a
subtractive clustering [13] instead. This clustering estimates
every data point as a possible cluster center, so there are no
prior specifications. Chiu [14] gives a description of the pa-
rameters that the subtractive clustering needs for good cluster
determination. We use subtractive clustering to determine a set
of cluster centers, that provide an upper bound for the Gath-
Geva clustering.

2) Initial Cluster Determination: The subtractive clustering
[13] can give an upper bound on the amount of clusters,
however, because it cannot adapt to covariant cluster shapes,
it needs many fuzzy cluster functions to adapt to the data. An
example is given in figure 1 on the left side for the subtractive
clustering and on the right for the Gath-Geva clustering. A
criterion is now needed to summarize multivariate clusters,
which can be covered through one covariant one.

The Partition Coefficient (PC)[15] measures the amount of
overlapping between clusters. Since the overlapping does not
directly indicate the correlation of the clusters, this criterion
can only be partly used. The same applies for the Classification
Entropy (CE), which is only a slight variation of the PC.

The Partition Index (PI) indicates the compactness and
separation of clusters. A Gath-Geva cluster has different size
and density characteristics, and therefore different nature in
separation, than the subtractive clustering, thus if the PI
indicating a good partitioning, this might not be the case for a
covariant cluster shape. Due to the similarity of the Separation
Index (SI) to the PI, this is also not practical in our case.

Other validity measures for clustering results, e.g. Dunn’s
Index (DI) and Alternative Dunn Index (ADI), also aim on
clustering specific similarities or dissimilarities, which cannot
easily be used for parametrization of different cluster algo-
rithms.

After evaluating the different validity measures on our
problem, we ended up with a different approach. Our method
uses the upper bound of cluster numbers derived through a
subtractive clustering as starting point, and than successively
reduces the amount, until a best classification through the
resulting covariant TSK-FIS is reached. Similar approaches can
be found in [16] and [17].

3) Gath-Geva Clustering: Gath and Geva [11] generalize
the maximum likelihood estimation for the fuzzy clustering.
They assume, that the normal distribution Nj , with the ex-
pected value for the cluster center −→mj , the covariance matrix
Σj , and the a-priory probability Pj are used to generate the
data −→v t ∈ VT . For initialization of the clustering, a set
of cluster centers M = {−→m1, ..

−→mc} needs to be estimated,
in our case we use a subset of the centers found through
the subtractive clustering. The number of clusters c has an
upper bound found through the subtractive clustering, which is
initially used. The initial memberships are calculated according
to the fuzzy c-means clustering through a Euclidian distance,

as follows:
µ

(1)
j (−→v t) =

1
‖−→v t −−→mj‖ (8)

in further iterations l = 2, 3.. of the algorithm, the member-
ship is calculated according to equation 5. First step of the
clustering algorithm is to calculate the cluster centers −→mj , as
follows:

−→m(l)
j =

∑m
t=1 µ

(l−1)
j (−→v t)−→v t∑m

t=1 µ
(l−1)
j (−→v t)

(9)

Second step is to determine the covariance matrix, which is
needed to calculate the distance measurement. The covariance
matrix is calculated as follows:

Σ(l)
j =

∑m
t=1(µ

(l−1)
j (−→v t))2(−→v t −−→m(l)

j )T (−→v t −−→m(l)
j )∑m

t=1(µ
(l−1)
j (−→v t))2

(10)
The algorithm employs a distance measurement based on the
fuzzy maximum likelihood estimates, proposed by Bezdek and
Dunn [15]:

Djt(−→v t,
−→mj) =

√|Σj |
P

(l)
j

e−
1
2 (
−→v t−−→m (l)

j )Σ−1
j (

−→v t−−→m (l)
j )T

(11)

The a-priory probability is:

P
(l)
j =

∑m
t=1 µ

(l−1)
j (−→v t)∑m

t=1

∑c
l=1 µ

(l−1)
l (−→v t)

(12)

The steps 1 and 2 of the algorithm get now repeated until
iteration l is reached where

∑c
j=1 |−→m(l)

j −−→m(l−1)
j | < ε.

4) Estimation of Consequence Parameters: The estimation
of the consequence parameters is done via an ordinary least-
squares method. For each rule the consequence parameters get
calculated separately by minimizing the mean squared error:

E(VT ) =
m∑

t=1

(ut − S(−→v t))2 =
m∑

t=1

(ut −
(n+1)c∑

k=1

btkak)2 (13)

The error gets minimized for each parameter of the conse-
quence by setting its gradient to zero:

∂E
∂al

=
m∑

t=1

2(ut −
(n+1)c∑

k=1

btkak)(−btl) = 0 (14)

Here ut is the wanted outcome for input vector −→v t, aj is
element of the vector −→a , and btj is element of matrix BT ,
which is calculated as follows:

btk =
µj(−→v t)∑c

j=1 µj(−→v t)
vkt (15)

, where k = 1, .., (n + 1), .., (n + 1)c, the normalized weight
of each rule j is repeated (n + 1) times, and v((n+1)·j)t = 1.

The parameters of the consequence part of each rule are
concatenated in one vector, as follows:

consequence consequence
param. rule 1 param. rule c

−→a = (
︷ ︸︸ ︷
a11, .., a(n+1)1, .. ,

︷ ︸︸ ︷
a1c, .., a(n+1)c)

= (a1, .., a(n+1), .. , a((n+2)·(c−1)), .., a((n+1)·c))
(16)
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Fig. 1. Found fuzzy clusters on covariant data for subtractive clustering (left) and Gath-Geva clustering (right)

Solving the equation 14 for all parameters aj leads to the
following linear equation:

2(BT
−→a T − u)T BT = 0

−→a T =
(
(BT

T BT )−1BT
T

)
u (17)

B. Generalization of Covariant TSK-FIS

The biggest problem in building classifiers in many ubiq-
uitous computing applications is the lack of sufficient data at
the time of construction and training. A mechanism is required
to dynamically adapt the classification to unknown input data
without changing the topology of the classifier.

We propose a method for the covariant TSK-FIS previously
introduced, where individually on each rule is decided which
of its inputs is relevant for classifying the new data and
which inputs are producing confusion. Since the combination
of inputs n and rules c results in a search problem of O(2n·c),
an evolutionary optimization method was chosen.

1) Bit Vector FIS Modification: A representation of the FIS
is needed that specifies the dimensionality of each rule, which
is in the current system either active or inactive. The two states
to be specified allow the representation to be a bit vector, which
is due to its efficient memory usage especially easy to store
and process on platforms with limited resources. The described
genetic algorithm optimization also works immediately with
bit vectors.

First, a function is defined that maps the general FIS S
according to the bit specification onto a modified FIS S′ with
modified rule dimensionality. The mapping function I is rather
an interpretation, than a modification of the FIS, since it does
only temporarily ’switch’ the inputs of the rules on or off, and
does not modify the topology of the FIS. The interpretation
function I is defined, as follows:

I :
{ FFIS(Rn, R) −→ FFIS(Rn, R)

S(−→v t) �−→ I(bitS, S(−→v t)) = S′(−→v t)
(18)

The interpretation I maps from the space of FIS functions
FFIS onto the same space, where FFIS(Rn, R) is a set of
FIS functions mapping from R

n onto R.
The bit vector specifies the inputs of the rules, which is

described through the following example:

rule 1 ... rule m

bitS = (
︷ ︸︸ ︷
1, 0, 1, .., 0, 1, ... ,

︷ ︸︸ ︷
0, 1, 0, .., 1, 0)

(v1,−, v3, ..,−, vn) ... (−, v2,−, .., vn−1,−)
w′

1(v1, v3, .., vn) ... w′
m(v2, .., vn−1)

f ′
1(v1, v3, .., vn) ... f ′

m(v2, .., vn−1)

(19)

There are two ways to modify the rules: One is to reduce
the dimensionality of the antecedent membership function and
the consequence, the other is to merely adjust the antecedent
parts. As can be seen in the evaluation, the modification of both
results in some cases in slightly better classification rate, but
the mean squared error (MSE) has also been seen to increase.

2) Genetic Algorithm: Genetic Algorithms belong to the
group of evolutionary methods. Originally, they were devised
for optimization with the ability to solve non-linear non-
quadratic optimization problems [18][19]. The aim is to find
a minimum for a fitness function through modifying the
individuals, which are specified through their genomes. From
each generation a subset of the individuals (population) with
the best fitness is selected for the next generation. A subset of
the best individuals also get mutated and recombined. The size
of each generation is constant. The bigger the search space, the
more individuals are needed.

In our optimization, the fitness is chosen to be the percent-
age of false classifications, the less the better. The percentage
is calculated upon a check set, which is independent of the
training set. A fitness based on the MSE is possible, but mostly
leads to less accurate classifications, because outliers increase
the MSE, but not necessary the classification accuracy.

The representation of the genome as bit vector is especially
efficient for optimization. Would the genome consist of real
values, then the variations, and with them the search space,
would be increasing to infinity, whereas the bit variations are
limited. The mutations of the individuals are within a certain
hamming distance to the original genome. The algorithm stops
if, for a certain number of generations, the fitness of the best
individual does not improve anymore.

IV. APPLICATION EXAMPLES

The data for our examples were collected with a typical
ubiquitous and pervasive artifact, the AwarePen [2][3]. This
artifact consists of a wireless communication device, a digital



signal processor, and a 3-dimensional acceleration sensor. It
is used to detect several states a pen can be situated in, e.g.
’writing with’, ’lying on desk’, ’point with’, ’in pocket while
walking’, etc. The input of the classifier is the variance, and
the mean over a window length L of every axis of acceleration,
which results in 6 inputs.

We now show how the covariance TSK-FIS reduces the
classification error compared to the multivariate one, and how
the genetic optimization reduces the error for unknown data.

A. Example 1: Pen Acceleration Data - 3 Classes

In the first example we show the performance of our
approach for a classifier that has three target classes. These
classes are: ’lying on desk’ (1), ’writing’ (2), and ’pointing
at slide’ (3). The genetic algorithm’s optimization is used to
reduce the classification error for data that differs from the
training data. Differences in the data for the ’lying on desk’
is introduced by having a cell phone ringing next to the pen,
thus resulting in slightly different motion data. The training
data for the ’writing’ class was recorded whilst writing on a
desk, whereas the unknown data is resulting from writing on
a vertical white board. Here, the mean values of the inputs
are different, since the orientation of the pen has changed
dramatically.

Upon the training data set of 900 data pairs, with about 300
per each of the three classes, the system was generated with
the previously introduced method. The percentage of correct
classifications for this training data set of the resulting covari-
ant TSK-FIS was 96%, and for an independent test set (no
unknown data) 94%. Another data set, called check data set,
was used to optimize the system with the genetic algorithm.
Half of the check data with 900 samples consisted of similar
data to the test set, and half of it was the previously described
unknown data. The classification accuracy before optimization
was 80%. After selecting the best result over several runs of
the genetic algorithm, the classification accuracy was improved
to up to 99%. To test the optimization a test set (also about
500 samples) was used, different to the previously used sets,
which consisted of training set similar and unknown data. The
accuracy before optimization was 83% and 97% after. The
confusion matrices for before (table I) and after (table II)
optimization show how the different classes have improved,
and where the false classifications are situated.

designated classified onto class
classes 1 2 3

1 68.7179 23.0769 8.2051
2 0 91.7874 8.2126
3 0 6.1224 93.8776

TABLE I
CONFUSION MATRIX FOR CHECK DATA (83%, MSE 0.5819) OF NON

OPTIMIZED FIS

B. Example 2: Pen Acceleration Data - 5 Classes

In the second example, we want to show that our approach
also works for more classes and more unrelated check data

designated classified onto class
classes 1 2 3

1 100.0000 0 0
2 0.4831 93.2367 6.2802
2 3.0612 0 96.9388

TABLE II
CONFUSION MATRIX FOR CHECK DATA (97%, MSE 0.5819) OF

OPTIMIZED FIS

than in the previous example. This is an upper limit of our
optimization approach, but still gives reasonable results. The
classes are: ’lying on desk’ (1), ’writing’ (2), ’pointing at slide’
(3), ’pen in trouser’s pocket whilst sitting’ (4), and ’pen in
trouser’s pocket whilst standing’ (5).

For all these target classes, extra motion patterns were
introduced during the test dataset to evaluate for robustness
of our approach. For the ’lying on desk’ class, the new data
contains noisy data from a ringing cellphone next to the pen,
and the desk it is lying on being bumped into. The class
’writing’ is constructed on ’writing on desk’ data, and is
optimized also for ’writing on white board’. A difference
to the ’pointing at slide’ class compared to the training set
is introduced by turning the pen around and pointing with
the front end at the slide. The ’pen in the trouser’s pocket
whilst standing’ class has unknown data from a different
and more active user, than the user in the training data. The
last class ’pen in the trouser’s pocket whilst sitting’ is the
most challenging one, since the user was once sitting on the
edge of the chair, having her legs in a different angle, and
another time the user is nervously moving her legs around.
The automatically constructed covariant TSK-FIS classifiers
upon the training set of 546 data pairs, which are less pairs
for more classes than in the previous example, the resulting
FIS was consisting of 18 rules, which was 6 less than the
upper bound from the subtractive clustering. The accuracy
for the training data set was 99% and for an independent
but similar (no unknown data) test set was 90%. This high
classification accuracy for fewer rules shows good coverage
through the covariant membership functions. Detailed results
can be seen for the test set in the confusion matrix of
table III. The classification accuracy of 54% on the check

designated classified onto class
classes 1 2 3 4 5

1 89.4737 10.5263 0 0 0
2 0 98.4848 1.5152 0 0
3 0 0 100.0000 0 0
4 0 12.5000 31.2500 56.2500 0
5 0 0 0 0 100.0000

TABLE III
CONFUSION MATRIX FOR TEST DATA (90%, MSE 0.5819, 273 SAMPLES)

OF CONSTRUCTED FIS WITHOUT OPTIMIZATION

data for this non-optimized covariant TSK-FIS is far from
useful. The genetic optimization has therefore to improve



the classifier substantially to get reasonable classification
results. The bit vector genome is 108 bits long, which results
in an increased search space for the optimization algorithm.
After optimization, the accuracy for the check set is 78%
and for the test set for optimization validation 75%. While
improving the classification for the new data, the classification
accuracy for the old test set (no unknown data) needs to
stay the same, or at least worsen just a bit, which is even
improved with an accuracy of 91% (before optim. 90%). The
genetic optimization was done for both, the antecedent and
the consequence part of each rule. The confusion matrices for
both sets can be found in table IV and V.

designated classified onto class
classes 1 2 3 4 5

1 98.2301 1.7699 0 0 0
2 0 92.3077 7.6923 0 0
3 7.0312 60.9375 31.2500 0.7812 0
4 0 0 0 98.9362 1.0638
5 0 3.9216 19.6078 0 76.4706

TABLE IV
CONFUSION MATRIX FOR CHECK DATA (78%, MSE 3.3464, 554
SAMPLES) OF OPTIMIZED FIS (ANTECEDENT+CONSEQUENCE)

designated classified onto class
classes 1 2 3 4 5

1 95.4545 2.7273 1.8182 0 0
2 0.9091 84.5455 10.9091 3.6364 0
3 9.8361 57.3770 32.7869 0 0
4 0 0 0 98.2143 1.7857
5 0 4.0000 28.0000 0 68.0000

TABLE V
CONFUSION MATRIX FOR TEST DATA (75%, MSE 4.0262, 554 SAMPLES)

OF OPTIMIZED FIS (ANTECEDENT+CONSEQUENCE)

For an optimization, only on the antecedent part of the
rules, the classification accuracy is slightly improved to up to
79% (MSE 1.3127) for the check set, 79% (MSE 5.9081) for
the test set, and the test set for construction of the FIS 86%
(before optim. 90%). The confusion matrix for this classifier
is in table VI.

designated classified onto class
classes 1 2 3 4 5

1 88.1818 7.2727 4.5455 0 0
2 2.7273 94.5455 0.9091 1.8182 0
3 3.2787 68.8525 23.7705 3.2787 0.8197
4 0.8929 0 1.7857 97.3214 0
5 0 2.0000 0 0 98.0000

TABLE VI
CONFUSION MATRIX FOR TEST DATA (79%, MSE 5.9081, 554 SAMPLE)

OF OPTIMIZED FIS (ANTECEDENT)

V. CONCLUSION

Two optimizations have been proposed to the Takagi-
Sugeno-Kang model, to enhance its performance in particular
in ubiquitous computing applications. These are challenging
since they present the classifier with unpredictable environ-
ments of deployment, are implemented on platforms with
limited resources, and have typically highly correlated input
data. Data from one such project, a sensor-augmented writing
pen, was used as a case study. We argue for the usage of a
Gath-Geva-clustering specification, as well as an evolutionary
algorithm approach to improve the model’s robustness, while
keeping the classifier resource-efficient enough at runtime.
Evaluation on the data from the case study show that accuracy
has improved from 83% to 97%, with these optimizations
under normal conditions, and for more challenging data from
54% to 79%.
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