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Abstract. Fuzzy inference has been proven a candidate technology for
context recognition systems. In comparison to probability theory, its ad-
vantage is its more natural mapping of phenomena of the real world
as context. This paper reports on our experience with building and us-
ing monolithic fuzzy-based systems (a TSK-FIS) to recognize real-world
events and to classify these events into several categories. It will also
report on some drawbacks of this approach that we have found. To over-
come these drawbacks a novel concept is proposed in this paper. The
concept incorporates fuzzy-based approaches with probabilistic methods,
and separates the monolithic fuzzy-based system into several modules.
The core advantage of the concept lays in the separation of detection
complexity into distinct modules, each of them using fuzzy-based in-
ference for context classification. Separation of detection functionality
is supported by an automatic process using transition probabilities be-
tween context classifiers to optimize detection quality for the resulting
detection system. This way our approach incorporates the advantages of
fuzzy-based and probabilistic systems. This paper will show results of
experiments of an existing system using a monolithic FIS approach, and
reports on advantages when using a modular approach.

1 Introduction

Fuzzy systems have been known for years and have been successfully applied in
many domains like control systems, medical systems and white ware electronics
[1]. The characteristics of fuzzy control systems is their ability to classify noisy
and vague input information in an application appropriate way. For example, in
a process control system an engine recognized system status might be neither
halted nor running after the machine receives the stop signal. Fuzzy systems
handle this by fuzzifying membership functions, thus basically the engine state
somehow belongs to both classes. This behaviour is similar to detecting situa-
tions of human activity: Between successive activities, there is a state which is
between two activity classes, so it is impossible to fix which this activity would



belong to. As shown in our previous work [2], the fuzzy logic approach can be
successfully applied for activity recognition. This can be carried out by assigning
fuzzy context classes to detected sensor events [2].

Another class of techniques successfully applied to the area of activity and
context recognition are probabilistic methods. These systems often use a filter-
based approach to improve the recognition rate of context recognition systems.
This is achieved by assigning an a priori probability to the following classification
and adjusting the recognized information accordingly.

This paper will show how we improve context and activity recognition sys-
tems by applying both methods in combination. Section 2 will shortly introduce
characteristics of fuzzy set theory and discuss some difference between fuzzy set
and probability theory. In section 3 we will illustrate our initial fuzzy inference
(FI) based context recognition method and also discuss recognition results for
this approach. In section 4 we will argument that we can further improve FI based
methods by separating FI functionality into modules. Section 5 will demonstrate
how to fuse our fuzzy-based approach with probabilistic methods to further in-
crease recognition rate. A discussion section 6 shows which degrees of freedom
are accessible through our approach. The paper is summarized in section 7.

2 Probability vs. Fuzziness

2.1 Fuzzy Set Theory

A general fuzzy set (x, µÃ(x)) is a tuple of a value x and a membership µÃ(x).
The membership function µÃ : U → [0, 1] expresses the degree of which an ele-

ment - e.g. a sensor value - belongs to the fuzzy set Ã - e.g. a context class. In
a crisp set A the membership µA : U → {0, 1} would equal 1 for all members.
Typical fuzzy membership functions are Gaussian-, triangular-, trapezoid-, etc.
functions µ : U→ [0, 1] with a maximum of one and a minimum zero. In general,
the fuzzy sets are an extension of the crisp set theory, and therefore fuzzy logic
is an extension of the Boolean logic. The fuzzy equivalents of Boolean operators
are functions f : [0, 1]2 → [0, 1].

2.2 Differences of Fuzzy Set to Probability Theory

Since the invention of the fuzzy set theory by Lofti A. Zadeh [3] a controversy
has evolved on whether to use the fuzzy logic or the probability theory. A prob-
ability based view of fuzzy sets and differences to probability was published by
Laviolette, et al [4] and is briefly summarized in the following:
Basic Differences: In value a membership is the same as a probability, both
are elements of the interval [0, 1], but the semantic is unequal and can therefore
not be compared. A membership does not follow the laws of probability.
The included Middle: A non-zero membership can simultaneously be held to
several fuzzy sets. The probability theory defines states in a distinct way, so only
the probability to one state can be expressed at one point in time, which was



criticized by Zadeh [5].
Toleration of Vagueness: The key idea in the fuzzy set theory is the definition
of vagueness [6]. In the probability theory there is no such concept.
Promotion of Emulation: The fuzzy logic is designed to emulate human be-
haviour and thinking about real-world concepts, whereas the probability theory
does not fully harness this natural potential [7]. Others [8] claim that the emu-
lation of human reasoning contradicts many empirical studies.
The Axiomatic ’Inadequacy’ of Probability: Kandel and Byatt [6] claim
that the laws of probability are not realistic since human beings do not conform
to them. Kosko [9] claims that the conditional probability theory lacks an ade-
quate axiomatic foundation. This is disproved by Fishburne [10].
Fuzzy Set Operations: The fuzzy operators are generalizations of the opera-
tors from the crisp set theory [3].

We claim that there are sufficient reasons to use both - as suggested by
Zadeh himself [11]. Contextual coherence can in some cases be more consistently
expressed in fuzzy sets, while in other cases it is more clearly defined through
probability states. We will study the limitations and mutual complementariness
based on a ubiquitous appliance that we built, the AwarePen.

2.3 Applications using Fuzzy Logic and/or Statistical Methods

There is a wide use of fuzzy logic techniques to model contextual coherences
on a semantic level. Guarino and Saffiotti [12] used fuzzy logic to monitor the
state of ubiquitous systems by the everyday user of the system. They claim that
fuzzy logic is especially suited to overcome heterogeneity in ubiquitous sensing
systems. The modelling is done by hand on a semantic level, which is not applica-
ble in our case. Another human computer interface approach using fuzzy context
can be found in [13]. One of the arguments stated here for using fuzzy logic, is
that it provides a continuous control signal, whereas Boolean logic does only pro-
vide discontinuous threshold based control signals. The system is also modelled
manually. An application using adaptive network-based fuzzy inference systems
(ANFIS) is introduced in [2]. Here the fuzzy system is used to represent the error
another system may cause when recognizing contexts. Our goal is to maximize
context recognition rate and minimize calculation effort at the same time.

A system that uses a probabilistic approach to represent regular activities in
a smart house based on the concept of anxiety is introduced in [14]. The anxi-
ety is formulated using probabilistic models. Another work [15] does localization
based on Bayesian networks. The location is inferred of a wireless client from
signal quality levels. It additionally discusses how probabilistic modelling can be
applied to a diverse range of applications using sensor data.

There is also a hybrid approach using both fuzzy logic and probabilistic
models in a context aware system. The proposed system [16] uses Bayesian net-
works for deriving consequences and fuzzy logic to draw attention to subjective
decisions. In this paper we focus more on context recognition and classification.



3 The AwarePen Architecture

The general architecture of the AwarePen consists of a hardware and software
part, whereas the software model is obtained offline through intelligent system
identification. Overall architecture are shown in fig. 1.

Fig. 1: General software architecture of AwarePen artefact

Our software design is based on long experience with smart artefacts in gen-
eral and the AwarePen [2] especially. A central aspect of our design is a fuzzy
inference system (FIS): The system is capable of automatically obtaining the
necessary parameters. The mapping can be fuzzily interpreted and thus stability
towards unknown input is much better in our system design than with neural
networks. The fuzziness of context classes is also a central aspect in our design
principles. Looking at the fuzzy side of the system design, there is initially no
probabilistic aspect in our architecture of the AwarePen, but a step by step ana-
lytical and experimental approach will deliver distinct facts to apply probabilistic
in system identification and design.

3.1 The Hardware

The software system is implemented using the AwarePen hardware. This hard-
ware consists of a small electronic PCB (fig. 2 middle and right) containing a
digital signal processing microcontroller unit (DSP-MCU, dsPIC by Microchip)
and a collection of sensors. The DSP-MCU is dedicated to processing sensor data
allowing fast, real-time sampling and FIS computation. For communication and
main system operation we used the Particle pPart [17] platform, which is plugged
onto the sensor PCB. In this paper we focus on 3D acceleration sensors only.
Boards and battery are applied inside a marker pen (fig. 2 left).

3.2 Online Fuzzy Inference System (FIS)

One way to map queued sensor data (mean and variance) onto context classes
is through a fuzzy inference system. The results of this mapping can be again



Fig. 2: Pictures of AwarePen hardware with pen (left), sensor board with dsPIC
on top side (middle) and sensor board with sensors on top side (right)

interpreted as fuzzy classes. The fuzziness is the actual error caused by the
mapping FIS. Here the fuzzy mapping is semantically correct for ALL context
classes that have overlapping patterns and therefore are not clearly distinguish-
able. With the AwarePen, classes ’pointing’ and ’playing’ are good examples
for fuzziness. Whilst ’playing’ around movements can occur which are typical
for ’pointing’. These circumstances are semantically correctly expressible with
fuzziness, and in particular with the ’included middle’ concept of fuzzy sets.

Takagi-Sugeno-Kang-FIS Takagi, Sugeno and Kang [18][19] (TSK) fuzzy in-
ference systems are fuzzy rule-based structures, which are especially suited for
automated construction. The TSK-FIS also maps unknown data to zero, making
it especially suitable for partially incomplete training sets. In TSK-FIS the con-
sequence of the implication is not a functional membership to a fuzzy set but a
constant or linear function. The consequence of the rule j depends on the input
of the FIS:

fj(−→v t) :=

n∑
i=1

aijvi + a(n+1)j

The linguistic equivalent of a rule is formulated accordingly:

IF F1j(v1) AND F2j(v2) AND .. AND Fnj(vn) THEN fj(−→v t)

The membership functions of the rule are non-linear Gaussian functions. The
antecedent part of the rule j determines the weight wj accordingly:

wj(−→v t) :=

n∏
i=1

Fij(vi)

The projection from input −→v t := (v1, v2, .., vn) onto the classifiable one-
dimensional set is a weighted sum average, which is a combination of fuzzy
reasoning and defuzzification. The weighted sum average is calculated according
to the rules j = 1, ..,m as follows:

S(−→v t) :=

∑m
j=1 wj(−→v t)fj(−→v t)∑m

j=1 wj(−→v t)



Fuzzy Classification The outcome of the TSK-FIS mapping needs to be as-
signed to one of the classes the projection should result in. This assignment is
done fuzzy so the result is not only a class identifier, but also a membership
identifying the clearness of the classification process. Each class identifier is in-
terpreted as a triangular shaped fuzzy number. The mean of the fuzzy number is
the identifier itself with the highest membership of one. The crisp decision which
identifier is the mapping outcome, is carried out based on the highest member-
ship to one of the class identifiers. The overall output of the FIS mapping and
the classification is a tuple (c, µc) of class identifier and membership to it.

3.3 Offline System Identification

The system identification of the FIS is not performed on the embedded device,
but on a PC. The computed high-efficient FIS is then downloaded onto the
AwarePen embedded device for processing in-situ FIS-based classification. It is
important that the resulting FIS represents the mapping function as precise as
possible, but the precision results in more rules. These conflicts with efficiency,
because the more rules a FIS has the better the mapping, but the less efficient.

Subtractive Clustering An unsupervised clustering algorithm is needed to
perform system identification. Each cluster results in a fuzzy rule representing
the data in the cluster and its influences on the mapping result. Since there is no
knowledge about how many clusters are required, an algorithm is needed that
computes the number of clusters automatically. For example, the mountain clus-
tering [20] could be suitable, but is highly dependent on the grid structure. We
instead opt for a subtractive clustering [21]. This algorithm estimates every data
point as a possible cluster center, so there are no prior specifications required.
Chiu [22] gives a description of parameters subtractive clustering needs for a
good cluster determination. Throughout this paper we use different parameters
for the subtractive clustering to achieve different numbers of clusters. The sub-
tractive clustering is used to determine the number of rules m, the antecedent
weights wj and the shape of the initial membership functions Fij . Based on initial
membership functions a linear regression can provide consequent functions.

Least Squares Linear Regression The weights aij of the consequent func-
tions fj are calculated through linear regression. The least squares method fits
the functions fi into the data set that needs to be adapted. A linear equation
for the differentiated error between designated and actual output - which can
be calculated with the rules and initial membership functions the subtractive
clustering identified - is solved for the whole data set with a numeric method.
Single value decomposition (SVD) is used to solve the over-determined linear
equation. Using the initial membership functions Fij , the rules j and the linear
consequences fj , a neural fuzzy network can be constructed. The neural fuzzy
network is used to tune the parameters aij , mij , and σ2

ij in an iterative training
towards a minimum error.



Adaptive-Network-based FIS A functionally identical representation of an
FIS as a neural network is an Adaptive-Network-based FIS (ANFIS) [23]. Most
of the network’s neurons are operators and only the membership functions Fij

and the linear consequences fj are adaptable neurons. This neural fuzzy net-
work is used to tune the adaptable parameters aij of the linear consequences,
and mij and σ2

ij of the Gaussian membership functions. The tuning process is
done iteratively through a hybrid learning algorithm.

Hybrid Learning The learning algorithm is hybrid since it consists of a forward
and a backward pass. In the backward pass we carry out a back-propagation of
the error between designated and real output of the ANFIS to the layer of the
Gaussian membership functions. The back-propagation uses a gradient descent
method that searches a preferably global minimum for the error in an error
hyper plane. The forward pass performs another iteration of the least squares
method with the newly adapted membership functions from the backward pass.
The hybrid learning stops, when a degradation of the error for a different check
data set is continuously observed. The resulting ANFIS represents the qualitative
non-normalized TSK-FIS S.

4 Divide and Conquer: Fragmentation of Complex FIS
Rules

We have shown in [2] that a FIS is capable of detecting even complex context
information from sensor readings. Nevertheless, handling and detection qual-
ity can be improved by dividing the processing of a FIS into several subparts.
Throughout this section such a FIS is step-by-step ’divided’ into subparts to
maximize classification results and to keep the calculation effort to a minimum.
The division is not done literally, instead of dividing the amount of classes each
FIS should map onto. At first, a single FIS with a varying number of rules, rep-
resents all classes (nine in the example of figure 1). In the next step, two FIS do
the same mapping, also with a variable set of rules each. In the last subsection
the mapping is done via four queued FISs, whose order is determined statically
according to best mapping result.

4.1 Analysis of Complex FIS Mapping Error

The usage of one FIS for mapping onto nine context classes with a reasonable
amount of rules is nearly impossible. Separating the patterns from acceleration
sensors is difficult when the patterns are too similar. For example, separating
the patterns of ’writing horizontally’ and ’pointing’ is hardly possible with only
mean and variance data, because they are nearly the same for both. In theory
of fuzzy sets it was proofed [24] that every function can be represented to an
infinite precision with a FIS with an infinite number of rules, but such theory is
of less value for resource limited embedded system. The chosen clustering shows



Fig. 3: Percent of correct classified data pairs for one FIS classifying all classes
(grey ×) or two FIS mapping onto classes (black +)

best results with a low amount of fuzzy rules, but still is not able to separate the
patterns to a satisfying degree. The percentage of correct classified data pairs
for a varying number of rules is shown in figure 3 as grey curve and × markers.

4.2 Dual-FIS Context Recognition

A better result according to the last section can be achieved when the big FIS
representing all classes is divided into several FISs. We start here by explaining
how to separate into two FISs, and later explain how to apply this method to
an n-FIS system.

In our first example, each FIS maps onto four (FIS A) or five (FIS B) basic
contextual classes (as ’writing’, ’playing’ etc., see fig. 4). To allow the transition
from one FIS to another, we add an additional classifier that represents all com-
plementary classes. To train each FIS correctly, an equal amount of data pairs
for basic classes and for the complementary class is required. In our two-FIS
example, the training data for the complementary class consists of data for all
classes the second FIS is mapping on. Correct selection of the training data is
important, as performance depends on the correct detection of basic classes, but
also on correct detection of complementary class. The recognition percentage for
an average rule evaluation based on a test data set is plotted in Fig. 3 (black
curve with + markers) against the equal amount of rules for the FIS recognizing
all context classes. For this plot the order giving the best classification result is
chosen in our example (first FIS A than FIS B).

For evaluation purposes a different amount of rules for each FIS are com-
bined and analyzed upon the average recognition rate for a test data set. The
recognition rate in percentage is plotted as a surface in figure 6 on the left and
as a contour plot on the right. A brief analysis of these plots can be found in
discussion section.

Fig. 4: Schematic of contextual classifier working with two FIS - (left)
combination with 50% and (right) with 48% correct classifications

To implement each of the two FIS above, it is important to know the number
of rules that have to be processed by each FIS for correct classification. Due to
the high variance of possible input data, it is difficult to give a general estimation
of the mean number of rules. A mean estimation for the number of rules to be
processed for an input data can be given:

NAB = P(A)(nA + P(B|A)nB) + P(B)(nB + P(A|B)nA)



= n(P(A)P(B|A) + P(B)P(A|B)), for nA = nB = n and P(A) + P(B) = 1

Probabilities are only distinguished by the amount of context classes represented
by each FIS and not through the average recognition rate for the classes or the
complementary one. Hereby P(X) with X ∈ {A,B} is the probability of the
FIS X to be evaluated according to the number of classes it classifies on. The
probability that the second FIS Y ∈ {A,B} needs to be executed - if the first X
is not capable of classifying the data - is expressed through the formula P(Y |X).
The number of rules each FIS consists of is nX with X ∈ {A,B}, where in our
case nA = nB . If each FIS is handling the same amount of rules, the mean rule
evaluation is 1

2n.

4.3 Queued Fuzzy Inference Systems

We can continue the above approach by further subdividing the classification into
four FIS. For example, one FIS (FISlying) represents ’lying’ and ’cell ringing’,
the next one (FIShand) classifies ’playing’ and ’pointing’, another one (FISwrite)
maps ’writing horizontally’ and ’writing vertically’ and the last (FISpants) man-
ages the classes ’sitting’, ’staying’ and ’walking’. FISs are queued after another.
The average amount of rule evaluations of 16,15 rules is a bit high, but the
recognition rate has improved up to 68,44%.

5 Stateful Interpretation and Probabilistic Optimizations

Up to this point the best order of the FISs in a queue was based on the overall
classification accuracy of the different sub-classifiers from a test-data run, and
therefore static at run-time. Even better results can be reached using a dynamic
ordering of FIS based on current state of the stochastic process. Basic knowl-
edge about the statistical behaviour of the classifiers and the underlying process
that is classified, allows us to optimize the order of the FIS queue dynamically,
and avoid unnecessary execution of FIS modules. Although adding some com-
plexity here, we can show that, we do not only save resources, but also improve
recognition rates.

One discovery we made looking at typical AwarePen states in a typical usage
process is that the transition of a classified state to itself during following clas-
sification is more likely than to any other state. Furthermore, we also see that
some classes, like ’playing’ after ’writing’, have higher transition probabilities
than for example ’walking’ after ’writing’. In order to make use of this statistical
feature in our experiments, we intuitively grouped classes in a way that similarly
form a kind of ’macro state’. The transition probability from this state towards
a state with classes from another FIS is much lower than towards itself.

We used this property to pre-compute an oder of a classification queue such
that we always execute the classifier first that matched in the last step. This
way we reduce the expected rule executions, but also improve the recognition
rates, because it becomes less likely to make mistakes in previous classifiers. The



results of such a scheme are shown in figure 5 and as a confusion matrix in table
1. The recognition rate is again improved and the dynamic FIS queue classifies
85% of the check data correctly.

Fig. 5: 4 FISs dynamically queued - black (+) data pairs are correct classified
and red (×) are false classified - 85,35% correct classified with an average of 10
rules evaluation

Error 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂

0 0 94.0594 4.9505 0.9901 0 0 0 0 0 0

1 0 30.8511 69.1489 0 0 0 0 0 0 0

2 5.7692 3.8462 1.9231 63.4615 3.8462 13.4615 7.6923 0 0 0

3 0 1.0417 0 12.5000 80.2083 6.2500 0 0 0 0

4 2.1053 1.0526 1.0526 6.3158 0 87.3684 2.1053 0 0 0

5 0.9524 0.9524 0.9524 0.9524 2.8571 15.2381 78.0952 0 0 0

6 0 0 0 0 0 0 0 100.0000 0 0

7 0 0 0 0 0 0 0 0 100.0000 0

8 0 0 0 0 0 0 0 0 4.3478 95.6522

Table 1: 4 FISs dynamically queued - Confusion matrix

5.1 Modelling and Optimization of Classification Probabilities

From this last dynamic experiment we can see that probabilistic modelling can
help us maximize the statistical classification correctness. The underlying trained
fuzzy system provides us with a quality of classification that is valuable when in-
terpreting a single classification in an application context. When quantitatively
optimizing the system the previous experiments suggest that we should leave
the fuzzy domain in favour of probabilistic modelling, as we do not look at a
single classification any more but multiple samples. In this section we therefore
provide a first probabilistic formalization based on our experimental findings to
explain the relationship between recognition rates, class grouping and different
classifier sequences.

In order to model the overall statistical performance of the proposed queued
interpretation system, we model the probability for a correct classification P(X̂t =
Xt), i.e. that the real state X equals the classified state X̂. Both random vari-
ables are defined over the same set of C. In the dynamic scheme we optimized the
classification queues on the previous state, which need to be analyzed separately:

P(X̂t = Xt) =
∑
x̂t−1

(
P(x̂t−1)

∑
xt

P(xt|x̂t−1)
(
P(X̂t = xt|xt, x̂t−1)

))

To reflect the different precomputed classifier sequences we introduce a total
order relation <i. The classifier queue <i orders (Ka <i · · · <i Kz) by their exe-
cution precedence. As in our experiments each classifier Ki in the queue classifies



into a specific set of classes CKi
⊂ C, so that CKi

∩ CKj
= ∅, or into the comple-

mentary state ⊥ (previously assigned with −1). For convenience we additionally
define a helper function, that selects the index of the classifier responsible for
a given class: m(c) = (i|c ∈ CKi). We further use the random variable Kx,t to
denote the classifiers result at time t.

In our system the classifications inside a queue are only based on the current
state Xt, while the choice of the queue depends solely on the previously classified
state X̂t−1 via a static lookup. If we classified state x̂t by a matching on non
⊥ classifier result Km(xt) we will in the next steps execute the classifiers in a
sequence according to <x̂t

.
As discussed before a classifier in a split classifier system, can only classify

correctly if the complementary state is classified for all previous classifiers. If we
take this process into account we can calculate the true positive probability, the
recognition rates of the classifiers and the queue system state:

P(X̂t = xt|xt, x̂t−1)) = P(Km(xt) = xt|xt, x̂t−1)
∏

i|Ki<x̂t−1
Km(xt)

P(Ki,t = ⊥|xt, x̂t−1)

Because the internal classifiers are stateless, i.e. independent of x̂t−1, we fi-
nally obtain a model for the overall recognition performance based on the recog-
nition rates, the class grouping and the classifier sequences:

P(X̂t = Xt) =
∑
x̂t−1

(P(x̂t−1)
∑
xt

(P(xt|x̂t−1)P(Km(xt) = xt|xt)∏
i|Ki<x̂t−1

Km(xt)

P(Ki,t = ⊥|xt)))

5.2 Definition of a Cost Function

We can use this model to derive optimization strategies for designing classifiers.
However, because in theory every classifier function can be represented by an
infinite number of rules in our TSK-FIS [24], we have to consider execution com-
plexity of the TSK-FIS when optimizing classification. To model this trade-off,
we introduce a composite cost function that incorporates the amortized recog-
nition rates and resource usage. The proposed optimization function

minimize cost = E[class cost] + E[exec cost]

is composed by the expectation of false classification costs and the expected
number of rule execution costs. We use P(X̂t = xt|xt, x̂t−1), which is associated
with class cost1 = 0 costs and the inverse P(X̂t 6= xt|xt, x̂t−1)), which associate
with an application specific cost class cost0 to define the expectation:

E[class cost] = (1− P(X̂t = xt|xt, x̂t−1))class cost0



Because of the strictly compositional setup of the constructed FIS the execu-
tion time is proportional to the number of rules. In order to obtain the expected
execution costs, we generalize the equation of section 4.2 in a similar way as the
equation for the recognition rates based on the number of rules in a FIS |KŜ |
and a cost factor rule cost:

E[exec cost] = rule cost
∑
ˆxt−1

∑
xt

P(xt|x̂t−1)
∑
Ki

|Ki|
∏

Kjr(x̂t)Ki)

P(Kj, t = ⊥|xt)

With a given algorithm for implementing classifiers K like our fuzzy system
as an internal classification algorithm, we can optimize the class mapping m and
queue mapping r to achieve a better recognition rate. Both the number of classi-
fiers and the number of rules in a classifier can additionally be adapted. Resulting
from this modelling we can easily see the interconnection of classifier grouping
and recognition rates via the state and the transition probabilities. Because the
true positive rates of the classifiers are dependent on an initial grouping and the
transition probabilities P(xt|x̂t−1) are again recursively dependent on the recog-
nition rates, we get a highly non-linear optimization problem. We can solve this
problem heuristically based on expert knowledge as we did at the beginning of
this section, or we can do an automated design space exploration using empirical
data.

6 Discussion

As we saw in our earlier experiments, we can find interesting trade-offs between
execution time and classification accuracy. Understanding those trade-offs in re-
lation to the underlying statistical process contains a high potential for a model-
guided optimization. Analyzing the cost function we can see different possibilities
for minimization. In the simplest case above, that splits a FIS into two separate
classifiers, we only changed execution order of a split classifier. Because we used
only static queues - i.e. the classification process is independent on x̂t, and P(xt)
was equally distributed - the expectation for the cost is solely dependent on
the recognition rates of the correct and complementary state, as already seen in
figure 4.

The second degree of freedom is modifying the internal FISs classifiers them-
selves by changing the rule numbers and thus also adapting the execution cost
expectation. We plotted the resulting optimization space in figure 6 comparing
recognition rates depending on the number of rules in a classifier that show a cer-
tain degree of linearity in the distribution, which suggests that classifier systems
can be modelled statistically. We can see that the maximal recognition rate is
roughly distributed around the ”natural” cluster amount returned by our initial
subtractive clustering. Knowing this optimal number of rules and the accord-
ing recognition rate allows us to estimate the recognition rates of FISs with a
different number of rules. This would mean, that even if the optimization space
already grows quickly for the static case, we could easily find good solutions. The



Fig. 6: Surface plot (left) and contour plot (right) for percent of right classified
data pairs for two FIS - better FIS first in line

figure also shows that we can find Pareto optimal solutions for cost (proportional
to the distance to zero) and recognition rate (height/colour).

The third degree of freedom was discussed here and is represented in our
model is the grouping of classes by common or separate classifiers. Naturally
this affects the local recognition rates, as seen already in 3. In our dynamic ap-
proach, which can change the queue order by a pre-computed lookup of based on
the previous match, the grouping additionally affects the joined probability for
having to detect previous complementary classes. This probability would be 1 if
Km(xt) = Km(x̂t) and thus optimal, if the previously classified state has the same
classifier as the current. We also see potential to heuristically optimization such
dynamic cases based on the model. By grouping classes into classifiers by their
transition probabilities at the beginning of the last section, we exploited the ob-
servation that P(xt|x̂t−1) is dominated by P(xt|xt−1) for high overall recognition
rates. With the results shown in 5 already hint the potential for such an approach.

7 Conclusion and Future Work

Motivated by the problems of extending our fuzzy classification system to sup-
port a larger quantity and diversity of recognizable context classes on a sin-
gle, resource-constraint device, we started looking at the intrinsic problems of
monolithic classifiers like our initial TSK-FIS. Because we strongly believe in
the expressiveness and the intuitiveness of automatically learned fuzzy inference
systems, we looked for ways to increase scalability. We showed in this paper,
that a divide and conquer approach allows complex classifications while main-
taining low execution overhead. Our experiments indicated, that maximum gain
can be obtained by carefully designing the division of the classifiers. Different
groupings, rules amounts and execution sequences for the classifiers all have ef-
fects on the recognition rates. It soon becomes clear that many of those effects
are interdependent. Already a simple set-up, which compromises a classifier split
into sub-classifiers acting in a chain of responsibility pattern, allows many de-
grees of freedom for optimizations. They are difficult to overlook by an appliance
developer, who only wants to optimize the recognition rates while being bound
in complexity by hardware constraints. Therefore we reviewed our experimental
findings and formalized the classification process in a probabilistic model. This
model captures the different effects of a divided classifier system and directly mo-
tivates different optimization strategies for maximizing the expected recognition
rate while minimizing the expected costs.

In this paper we outlined how a fuzzy inference system can profit from a com-
plex top down probabilistic analysis, which can be done off-line. In future work
we plan to develop a tool chain that helps the artefact developer in designing



classifiers that are automatically optimized based on the parameters of the un-
derlying process. We motivated and showed that a combination of a bottom-up,
pre-trained classification system with an probabilistic approach is advantageous
from both a system performance perspective, but also from the simplicity to
understand and use such a system in ubiquitous computing settings. We believe
that the complexity of embedded ubiquitous applications can only be dealt with
by an intuitive design abstraction like fuzzy inference systems paired with op-
timization technologies for an automated design space exploration based on the
probabilistic modelling of the appliance and its context.

References

1. Elkan, C.: The paradoxical success of fuzzy logic. IEEE Expert: Intelligent
Systems and Their Applications 9 no. 4 (1994) 3–8

2. Berchtold, M., Decker, C., Riedel, T., Zimmer, T., Beigl, M.: Using a context
quality measure for improving smart appliances. IWSAWC (2007)

3. Zadeh, L.A.: Fuzzy sets. Volume 8., Information and Control (1965) 338–353
4. Laviolette, M., Seaman, J., Barrett, J.D., Woodall, W.: A probabilistic and

statistical view of fuzzy methods. Technometrics 37 (1995) 249–261
5. Zadeh, L.A.: Is probability theory sufficient for dealing with uncertainty in ai? a

negativ view. In: Uncertainty in Artificial Intelligence, Elsevier (1986)
6. Kandel, A., Byatt, W.: Fuzzy sets, fuzzy algebra and fuzzy statistics, IEEE (1978)
7. Kosko, B.: The probability monopoly. Volume 2., Fuzzy Systems, IEEE (1994)
8. Kahneman, D., Slovic, P., Tversky, A.: Judgement under uncertainty: Heuristics

and biases, Cambridge University Press (1982)
9. Kosko, B.: Fuziness vs. probability. International Journal of General Sys. (1990)

10. Fishburn, P.: The axioms of subjective probability, Statistical Sci. (1986)
11. Zadeh, L.A.: Discussion: Probability theory and fuzzy logic are complementary

rather than competitive. Technometrics 37 (1995) 271–276
12. Guarino, D., Saffiotti, A.: Monitoring the state of a ubiquitous robotic system: A

fuzzy logic approach. Fuzzy Systems Conference (2007) 1–6
13. Mäntyjärvi, J., Seppänen, T.: Adapting applications in mobile terminals using

fuzzy context information. In: Mobile HCI, London, UK, Springer-Verlag (2002)
14. West, G., Greenhill, S., Venkatesh, E.: A probabilistic approach to the anxious

home for activity monitoring. Computer Software and Applications Conf. (2005)
15. Castro, P., Chiu, P., Kremenek, T., Muntz, R.R.: A probabilistic room location

service for wireless networked environments. Ubiquitous Computing (2001)
16. Park, J., Lee, S., Yeom, K., Kim, S., Lee, S.: A context-aware system in ubiquitous

environment: a research guide assistant. Cybernetics and Intelligent Sys. (2004)
17. TecO: http://particle.teco.edu. Telecooperation Office, Univ. of Karlsruhe (2006)
18. Tagaki, T., Sugeno, M.: Fuzzy identification of systems and its application to

modelling and control. IEEE Trans. Syst. Man and Cybernetics (1985)
19. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets and

Systems, 1988, vol 26(1), pp 15-33 (1988)
20. Yager, R., Filer, D.: Generation of fuzzy rules by mountain clustering. Journal

on Intelligent Fuzzy Systems, vol 2, pp 209-219 (1994)
21. Chiu, S.: Method and software for extracting fuzzy classification rules by subtrac-

tive clustering. IEEE Control Systems Magazine, 1996, vol. pp. 461-465 (1996)



22. Chiu, S.: 9, Extracting Fuzzy Rules from Data for Function Approximation and
Pattern Classification. In: Fuzzy Information Engineering: A Guided Tour of
Applications. John Wiley&Sons (1997)

23. Jang, J.S.R.: Anfis: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man and Cybernetics, 1993, vol. 23, pp. 665-685 (1993)

24. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall, Englewood
Cliffs (1998)


