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Abstract

Energy storage is quickly becoming the limiting factor
in mobile pervasive technology. For intelligent wearable
applications to be practical, methods for low power activ-
ity recognition must be embedded in mobile devices. We
present a novel method for activity recognition which lever-
ages the predictability of human behavior to conserve en-
ergy. The novel algorithm accomplishes this by quantifying
activity-sensor dependencies, and using prediction methods
to identify likely future activities. Sensors are then identified
which can be temporarily turned off at little or no recogni-
tion cost. The approach is implemented and simulated using
an activity recognition data set, revealing that large savings
in energy are possible at very low cost (e.g. 84% energy
savings for a loss of 1.2 pp in recognition).

1 Introduction and Related Work

As concepts from pervasive and mobile computing be-
come more mainstream, the community seeks practical ap-
proaches for realizing pervasive technology. Situational,
context or activity recognition techniques provide a method
for machines to recognize human and social situations, al-
lowing them to act proactively without contradicting or of-
fending their owners. Modern technological devices such
as smart phones or wireless sensor networks are now able to
handle these algorithms [15] as processing power and mem-
ory improve over time according to Moore’s Law.

Energy storage in such devices is not subject to the same
doubling effects and is quickly becoming the limiting fac-
tor in pervasive technology. This can be seen clearly when
reviewing the battery lifetimes for mobile phones over the
past 10 years. The cost of communication in terms of en-
ergy consumption is another factor which does not scale ac-
cording to Moore’s Law, indicating that for intelligent wear-
able applications to be practical, methods for low power sit-
uational recognition must be embedded in mobile devices.

Many things we do have a certain repetitiveness or pe-

riodicity about them [17], and are therefore predictable to
a certain extent. This information can be used to improve
recognition abilities [11]. It is the proposal of this work that
it can also be used to reduce the power consumption of the
recognizing device as well. The idea is simple, given a sce-
nario where activities are performed in a manner which is
predictable, probable future activities can be forecast. Sen-
sors which are not needed to decipher probable activities
from each other can be turned off, conserving energy with-
out greatly impacting recognition rates.

Embedded classification for mobile devices is not a new
concept and goes as far back as 1997 [4], where Bouten el
al. used simple signal processing to measure activity lev-
els of users wearing a mobile device. Several methods for
low power embedded context classification have been in-
troduced in the activity and context recognition community.
Cacmakci et al. [5] and Stäger et al. [14] introduce straight-
forward approaches to low power recognition of contexts
and activities in embedded systems using inertial or audio
sensors respectively. Krause et al. [9] propose to dynam-
ically reduce sensor sampling to conserve energy, thereby
greatly increasing the lifetime of a single battery. A similar
approach was presented by Sun et al. [16] where coarse-
grained activity levels were locally recognized to adjust the
sensor sample rate. Benbasat et al. [1] introduce a method
for conserving energy in a system with redundant sensors
which are switched on and off dynamically based on the
level of activity currently measured. Roy et al. [12] use sen-
sor configurations which are selected for specific activities
based on the minimum requirements of an application. The
result of the research discussed here is that there is always
a trade off between how well activities can be recognized,
and how much energy it costs to do it [15, 2].

Here we present a different method for using context (or
activity) prediction to conserve energy. Context prediction
is the process of using context history to predict contexts,
situations or activities which will occur in the future [10].
This can be done at several different abstraction levels [13],
ranging from extrapolating raw sensor data into the future,
to predicting abstract concepts such as activities.
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This work proposes that by leveraging the predictabil-
ity of human actions, it is possible to tip the balance of the
energy/recognition trade off to conserve energy resources.
This approach was first proposed in a poster [7], and is inde-
pendent of the classification and prediction algorithms used.
The performance is simulated using a preexisting activity
recognition data set [6], where artificial data sets are gener-
ated in order to evaluate different scenario parameters. The
results indicate that the novel approach allows for applica-
tion and scenario specific selection of an optimal recogni-
tion/energy trade off, producing large energy savings, even
for small recognition losses (e.g. 84% energy savings for
1.2 pp loss in recognition).

2 Algorithmic Approach

The standard process for activity recognition using ma-
chine learning algorithms is straightforward. Sensors are
sampled in parallel at an arbitrary but constant rate and pe-
riod of time. The data is then saved as a discrete multi-
dimensional vector, referred to as a sample window. This
window is processed using different algorithms to gener-
ate signal features, e.g. standard deviation, average, FFT or
cepstral coefficients. Which features are used depends on
the application, i.e. which activities we want to recognize,
and the type of sensors being used, and are referred to all to-
gether as a feature vector. A machine learning algorithm is
given the task of recognizing which activity was occurring
during the sample window, based on its feature vector.

We propose integrating prediction into the process to im-
prove energy consumption as demonstrated in Fig. 1. First,
activated sensors are sampled to generate a sample window.
The sample window is then processed into a feature vec-
tor, and classified as to which activity is being performed.
Based on the classification history, future activities which
are likely to occur are predicted. An appropriate sensor
configuration is then activated to distinguish only the likely
activities, and the process repeats itself.

During the course of this research, three parameters have
been identified which affect the trade off between energy
and recognition. The first is the predictability κ of the
sequence of activities, or the inherent predictability of the
scenario itself. A low value for κ indicates that prediction
results are no better than random, where a κ = 1 indicates a
100% prediction accuracy. In real world scenarios, κ simply
equates to the prediction rate for a given predictor and sce-
nario. This parameter cannot be influenced by the designer,
and can only be quantified by analyzing the scenario and
predictor beforehand. The second parameter affecting per-
formance is ρ, the number of classes which are predicted
at each time step. The more classes which are predicted,
the better the chance that the next class is actually among
the predicted classes (correct prediction), but the lower the
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Figure 1. The Novel Algorithm (Green) and
Simulation Environment (Blue)

savings will be as the system accounts for more possible
activities. Therefore ρ specifies the level of risk, which al-
lows the designer to tip the odds towards recognition or en-
ergy as will be seen later. The third parameter is application
specific, and is referred to as the loss parameter λ, which
specifies the amount of recognition which can be sacrificed
in order to conserve energy without breaking the applica-
tion’s requirements. A λ value of 0 indicates that optimiza-
tions causing any loss at all, however minimal, are not ac-
ceptable, and λ = 1 means energy savings are of the utmost
priority, and recognition rates are of no importance.

2.1 Weighting Sensors to Activities

Now the method for selecting which sensors to activate
based on predicted activities will be explained. When ob-
serving the chain of events in the context classification pro-
cess, each feature in the set of features used f ∈ F is im-
plicitly mapped onto a single sensor in the set of sensors
s ∈ S. That sensor generates the data for this feature, pro-
ducing the surjective mapping a of features onto sensors
a : F → S. Reversely, each sensor si is then “responsible”
for a subset of features F̃si ∈ F , meaning the features in
F̃si are generated over data from sensor si.

Mapping activity classes onto the sensors over the fea-
tures is not as simple. This mapping cannot be carried out
independent of the classifying algorithm, as each algorithm
has a different method of measuring the distance between
two vectors [3]. An overview of selecting features which
best suite an embedded application is presented by Könönen
et al. [8], providing a sensor to application mapping. A
method for generating a sensor to class (activity) mapping
by relevance or importance was proposed by Roy et al. [12],
which they referred to as quality-of-inference (QoINF). As
will be discussed later, this method is not effective for the
approach and data set presented here.

Turning sensors on and off will result in a dynamic fea-
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ture vector length, and for this reason we will consider clas-
sifiers which can natively support this. Specifically, nearest-
neighbor classifiers are well suited to this task as omitting
a feature represents a dimensional reduction of the labeled
training vector space, and the missing features are simply
excluded from the distance calculation. Probabilistic mod-
els are also well suited as the observational distributions for
missing variables can be ignored when calculating the prob-
abilities of the hidden states. Both examples lose only the
information that would have been gained from the missing
features, but are not further negatively affected [3].

In order to generate the weighted mapping (the weight
is the dependency of activities on sensors), training data is
gathered for each class. Weight calculation was done by
testing the trained classifier against all training vectors for
each class and simulating different feature combinations.
Selected features were turned off and the dependency of
each class on those features was evaluated. The degree of
dependency is the drop in accuracy compared to the full
feature vector: a large drop in recognition indicates a high
dependency, a small drop, low dependency.

Initially the intent was to only evaluate the weight for
each feature individually. The cost/dependency weights
for a sensor could then be calculated by summation of the
weights of its features, assuming qcfi + qcfj ≈ qcfij , or that
the cost of turning off two features, is the cost of the one
plus the cost of the other as indicated by Roy et al. [12].
This however proved to be too inaccurate to be useful due to
the conditional dependence of features and sensors, making
qcsi + qcsj ≤ qcsij [8]. Therefor, Q values were calculated
for each class against all possible sensor subsets directly,
instead of by summing single feature or sensor values.

In order to correctly estimate the optimal sensor subset
S̃ for a sensing and classification step, the matrix Q must
be calculated only once at training time. The resulting map-
pings can be seen in Fig. 2, showing one mapping of class
c2 ∈ C onto sensors S̃1,3 ∈ S over features generated from

S̃1,3. Each mapping in b : C
Q−→ F represents one element

in the Q matrix, in this case qc2S̃1,3
∈ Q. The Q matrix

is indexed by the power set of S without the empty set,
or S̃ ∈ ℘(S)\{}, and the classes c ∈ C, resulting in a
|C| × (2|S| − 1) matrix. The value at each point i, j in-
dexed by ci and S̃j is the recognition loss when classifying
ci using sensor subset S̃j compared to using all sensors S
over a set of evaluation data samples. Now, for each class
ci ∈ C̃t+1 where C̃t+1 is the set of activities predicted to
occur at the next time step, a set of sensors S̃t+1 can be
identified which is optimal with respect to λ. This is ac-
complished by selecting the sensor subset S̃ for the next
period t+ 1 such that it fulfills Eq. (1).

S̃t+1 = arg min
En(S̃)

,∀c∈C̃t+1
qS̃,c ≤ λ (1)

Where En(S̃) is the combined energy consumption of all
sensors in S̃. Simply put, in order to recognize the classes
predicted to occur next C̃t+1, the sensor configuration S̃ is
selected which saves the most energyEn(S̃) without violat-
ing the acceptable loss parameter λ for any of the predicted
activities c ∈ C̃t+1. Effectively, this selects the sensor con-
figuration with the lowest energy consumption that is still
capable of recognizing the predicted classes, while main-
taining acceptable recognition rates. The next section will
analyze the use of context prediction to generate a set of
classes which are likely to appear in the next sample win-
dow (C̃t+1).

2.2 Context Prediction

Context prediction is used to estimate a subset of all con-
texts or activities C̃t+1 ∈ C which are most likely to occur
at the next time step t + 1. The cardinality of |C̃t+1| = ρ
is a parameter which can be adjusted, and allows the de-
signer to select the recognition accuracy risk against the en-
ergy reward as will be shown in Sec. 4. This approach is
independent of the algorithm or abstraction level used for
prediction. Important is only the quantification of the pre-
dictability parameter κ which is simply an indicator of how
well the predictor is able to forecast the given scenario (pre-
dictor accuracy). The results presented here should there-
fore still apply for all scenarios and prediction algorithms.

As indicated by Fig. 1, high-level context information at
the activity or context abstraction level is used for predic-
tion. Using low-level, sensory or feature data is also an op-
tion, but high-level prediction reduces complexity in terms
of training and classification [13]. The algorithm used for
prediction is a first-order Markov chain consisting of states
c ∈ C. At each time step, the probability P (ci,t+1|ct) for
each ci ∈ C is calculated, and the ρ states with the highest
probabilities are output as predictions.



3 Implementation and Simulation

This section presents the algorithmic implementation
and the simulation environment. Both were programmed
using the Python programming language.

3.1 Simulation Environment

The main concept is to leverage the predictability of hu-
man actions in order to conserve a large amount of energy
while only sacrificing a small amount of recognition capa-
bilities. The simulation environment was designed to eval-
uate the method for various degrees of predictability κ.

The data set used for evaluation [6] contains 142 min-
utes of data from 4 sensors (see Tab. 1), sampled from 5
subjects performing 8 activities (taking a bus, riding a bike,
walking, jogging, taking the elevator, typing at a desk, go-
ing up/down stairs, and standing). The system simulates
real time through a replay mechanism using the recorded
data. The data set is cut up into one second windows with-
out overlap, over which features are generated. The result-
ing feature vectors are then fed to the novel algorithms as if
it were being generated in real time. The sensor configura-
tions are simulated, where for a specific sensor configura-
tion S̃, the features F̃S̃ are present in the feature vector and
all others are omitted.

Once a sensor configuration S̃ has been selected, the fea-
tures F̃S̃ are calculated. Per sensor, the following features
are calculated: average, standard deviation, area under the
curve, min-max difference, Shannon entropy, and FFT peak
as these are common and effective features [6].

The energy consumed by the device En(S̃) is recorded
for the time step. The total consumption consists of the con-
sumption of each sensor, as well as the energy consumption
of the microprocessor during the course of the sample win-
dow, or one second. The energy model is simplistic, ramp-
up and ramp-down times/consumptions of the sensors are
not modeled, and the processor consumption is modeled as
being constant regardless of load. This approximation does
not account for the added load of prediction, but the method
used here has a computational load of onlyO (|C|) [7]. The
energy consumption rates for each device simulated can be
found in Tab. 1. At each time step, a new S̃t is provided
by the algorithm, which results in a different feature vector
consisting of features F̃S̃ , and a different energy cost. The
amount of energy consumed can then be compared with the
amount consumed for the reference case when S̃ = S, i.e.
all sensors remain on, for comparison.

As with energy consumption, the simulation environ-
ment also records classification results, both for the novel
algorithm and for the reference case. For each time step,
the algorithm classifies F̃S̃ and the result of the classifica-
tion is recorded, along with the energy consumption. At the

Table 1. Component Energy Consumption [6]

Element Energy Cost (mW)
Function Name Online Offline
Light APDS-9003 8.25 0.0
Acceleration ADXL335 1.4 0.0
Temperature TC1047 0.1155 0.0
Microproc. PIC18LF14K 0.0512 0.0
Vibration MVS 0608.02 0.0015 0.0

same time, the complete feature vector FS , consisting of the
entire feature set F is also classified and the result is stored
for comparison with the reference system. The result is that
the simulator records the energy consumption and classifi-
cation results for both the novel prediction-based activity
recognition algorithm, as well as the reference case when
all sensors remain on.

Artificial Data Set In order to evaluate the behavior of
the system for different degrees of predictability (κ), artifi-
cial data sets are generated using the original data set and a
generative probabilistic model shown in Fig. 3. The goal is
to generate a data set which is predictable to a specified de-
gree by the predicting algorithm, meaning that it results in
a certain prediction accuracy. A Markov chain assumes that
the process being modeled holds with the Markov property.
It follows that by changing how pronounced the Markov
property is in the data, the accuracy of the predictor can be
set. The predictability is defined as κ ∈ [ 1

|C| , 1] where a
value of 1 indicates that

∀i∃j|P (ct+1 = cj |ct = ci) = 1

and a value of 1
|C| indicates that

∀i, j|P (ct+1 = cj |ct = ci) =
1

|C|

or that all transitions are equally likely. Setting κ = 1
|C|

is the lower bound for predictability, as there are |C| tran-
sitions leaving each state, and the probabilities of all exit
transitions sum to one. Assigning κ a lower value than this
means at least one exit transition must have a probability
higher than 1

|C| , increasing predictability.
Using κ, we can generate a HMM (not to be confused

with the HMM used for recognition) by ordering states such
that each state has 1 and only transition to a different state
with probability κ, and only 1 transition from a different
state to itself with probability κ. All other transitions have
probability κ̄ = 1−κ

|C|−1 . Simply put, as κ approaches 1, the
state following the current state becomes more and more
certain, and therefore easier to predict. As κ approaches



the lower bound of κ = 1
|C| , the next state becomes more

random, and harder to predict. Once this model is created,
traversing it generates emissions which are sample windows
from the original data set for the given activity. This is
demonstrated in Fig. 3 for an example 3-class dataset.

3.2 Experimental Process

The algorithm presented here is not application specific.
It is meant to reduce the cost of embedded activity and con-
text recognition in scenarios with repetitive temporal pat-
terns. Each application is different in terms of the optimal
trade off between energy consumption and accuracy [15].
The algorithm and the following evaluation is conducted
without a specific cost model, but allows the reader to eval-
uate the effectiveness for the application scenario at hand.

The classifiers used are the Hidden Markov Model [11]
(HMM), and the k-Nearest-Neighbors (kNN) [3] algo-
rithms, as they are both easily adapted to a variable feature
vector length, and have both been evaluated on the data set
previously [6]. The algorithm requires two separate sets of
training data, one to train the classifier and predictor, and
a separate one to populate the Q matrix using the trained
classifier. A third data set is required for evaluation.

Training Phase Each artificial data set is separated into
3 portions, the data used to train the classifier and predic-
tor D̃Train makes up 60% of the original data set D. An-
other 20% D̃Q is used to calculate the Q matrix, as using
D̃Train for this purpose results in overfitting, and therefore
distorted loss values in Q. Finally, the last 20% D̃Eval is
used to evaluate the performance of the whole system, and
in this experiment contains 3595 sample windows in total.

In the first step, D̃Train is used to train the classifier, ei-
ther HMM or kNN, as well as the Markov chain used for
prediction. In this phase prediction is not used for classifi-
cation, and both the classifiers and the predictor are trained
on all features of F . In the second training step, D̃Q is used
to populate the Q matrix by evaluating the recognition rate
of every class ci with every permutation of S̃. Therefore,
every combination in C × ℘(S)\{} is evaluated in a sep-
arate classification phase, using all vectors for activities of
the current subset.

Testing Phase In the testing, or evaluation phase, the clas-
sifier algorithms are run on D̃Eval in parallel. At each clas-
sification time step, the S̃t resulting from the previous time
step is used to generate a new feature vector F̃t. This vector
is then classified, either by the HMM or kNN classification
algorithm. Based on this classification, the prediction al-
gorithm predicts ρ probable classes C̃t+1 for the next time
step. Next, the sensor subset S̃t+1 is selected such that it
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Figure 3. Generative Model for Construct-
ing an Artificial Data Set with 3 Classes (C),
Emissions (E) and Predictability κ

fulfills Eq. (1). At the end of each step the simulation en-
vironment records the classification result using F , F̃t, the
ground truth for that sample window, the sensor subset S̃,
the energy consumed En(S̃t) and the predictions S̃t+1 for
the next time step.

4 Evaluation

For each different degree of scenario predictability κ
(12.5:87.5 step 12.5), a different artificial data set was gen-
erated. The number of predicted states ρ (1:8 step 1),
the acceptable loss parameter λ (0:1 step 0.1) and the
classifier (HMM and kNN) were permuted to evaluate the
output parameters over each data set. The results are 6-
dimensional, consisting of dimensions ρ, λ and κ, the clas-
sifier, recognition rates and energy consumption. It is im-
possible to impart this information in its entirety in the
space allotted, therefor major insights will be detailed and
demonstrated with graphical excerpts.

4.1 Recognition Loss

For a given loss parameter λ, loss of recognition de-
creases monotonically (meaning recognition increases) for
an increasing ρ (number of states predicted). This is demon-
strated by Fig. 4 for a κ of 0.125, and again in Fig. 5 for a
κ of 0.875 for both the HMM and kNN classifiers. This is
again evident in Fig. 7, where for a given λ, increasing ρ ei-
ther reduces or leaves recognition loss unchanged. In other
words, increasing the number of classes predicted increases
recognition rates and reduces energy savings.

The same also applies to the acceptable loss λ, where for
a given classifier and ρ, loss in recognition and energy sav-
ings increase monotonically with λ. The implication is that
the acceptable loss parameter λ does indeed function as an
indicator for how much loss can be sacrificed as proposed.
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Figure 4. Recognition Loss and Energy Sav-
ings for the HMM (a) and kNN (b), κ=0.125

The monotonic behavior of ρ and λ implies that for a given
predictability κ, the lowest recognition loss (best recogni-
tion) is obtained by ρ = |C| and λ = 0, and the highest loss
(worst recognition) when ρ = 1 and λ = 1.

Observing accuracy loss over κ for fixed values of λ and
ρ is not as clear cut. In Fig. 6, varying κ affects recog-
nition for ρ = 4 using the HMM, where recognition loss
is not monotonically decreasing as κ increases (compare
κ = 0.125 with κ = 0.25 for λ = 0.8), but the trend is
decreasing. For the kNN classifier, the effects of κ are min-
imal when compared to the HMM as seen in Figs. 4 - 7.

4.2 Energy Consumption Rates

The energy savings is defined as the relative decrease in
energy consumed over the evaluation of D̃Eval between the
reference classifier with all sensors on and the novel algo-
rithm. When observing Fig. 4 and Fig. 5, the acceptable
loss parameter λ has a far greater influence on energy sav-
ings than either ρ or κ. Fig. 6 and Fig. 7 demonstrate this
by showing very little differentiation in energy savings for
either κ or ρ respectively. In all cases, a relatively small val-
ues of λ (≈ 0.1) suffice for large energy savings (>80%).

All of the images displaying the results clearly show a
rapid increase in energy savings for even small acceptable
loss values. This increase is caused by the light sensor,
which consumes an order of magnitude more energy than
the vibration sensor for example (see Tab. 1). The light
sensor is the first to be shut off, creating the steep climb
over low values of λ seen clearly in Figs. 4 and 5. Another
slight increase can be seen around λ = 0.5 corresponding
to the acceleration sensor. Shutting off this sensor however,
causes large increases in recognition loss. In other words,
the algorithm filters out those sensors first which contribute
little, but cost a lot.
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Figure 5. Recognition Loss and Energy Sav-
ings for the HMM (a) and kNN (b), κ=0.875

4.3 Classifier Comparison

The kNN classifier performance for the reference clas-
sifier (all sensors on) remained stable across κ with recog-
nition rates between 79.6 - 80.1%. Reference recognition
rates for the HMM on the other hand varied in performance
from 70.5% for κ = 0.125 to 81.6% for κ = 0.875, indicat-
ing that the recognition rates of the HMM are quite depen-
dent on the predictability of the scenario. This can be seen
again in Fig. 6, where recognition losses vary little for all
values of κ for the kNN classifier, but are further spread out
for the HMM classifier. However, the recognition loss for
the HMM is consistently higher than for the kNN classifier
for the same parameters. This can be seen when comparing
the top left and bottom left images in Figs. 4 and 5.

On the other hand, the kNN classifier appears to be con-
sistently better at conserving energy than the HMM classi-
fier, as seen in Fig. 7 when comparing energy savings of the
HMM and kNN classifiers for λ = 0.1 or λ = 0.6 for ex-
ample. Fig. 5 demonstrates that this is also evident for other
values of κ. Both Fig. 4 and Fig. 5 indicate that the energy
consumption of the kNN classifier is also less for higher val-
ues of ρ, staying constant where the HMM energy savings
fall off. Fig. 8 confirms this (noisily) by indicating higher
savings for the kNN classifier compared to the HMM, and
less variance over κ for higher values of ρ.

5 Discussion and Insight

In Figs. 4 and 5, non-zero energy savings are present,
even when λ = 0. Intuitively, setting λ = 0 means that
any loss in recognition is unacceptable. For certain classes,
some sensors are so insignificant that shutting them off re-
sults in an error increase so small that it is approximated
to 0. Here the expensive light sensor is useless for most
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Figure 6. Recognition Loss and Energy Sav-
ings for the HMM (a) and kNN (b), ρ=4

classes, and can be shut off with no loss as long as one of the
few classes requiring it is not predicted. As more states are
predicted however, classes requiring that sensor are more
frequently predicted, regardless of their occurrence rate, in-
creasing consumption with no effect on recognition.

The situation when ρ = 1 is extremely volatile, since
only the single most likely future class is predicted. Fig. 4
and Fig. 5 show that ρ = 1 has significant negative effects
for all non-zero values of λ. False classification results in
false prediction, results in false classification again. This
snowball effect is due to the fact that the system does not
know when it has made an error. Introducing a confidence
value at this point may allow the system to recognize error
occurrence and correct by switching sensors back on. The
low recognition rates for ρ = 1 indicate that for all real
scenarios ρ = 1 should not be considered. For higher values
of κ such as 0.875 in Fig. 5, predicting as few as two states
at each step can be sufficient.

The kNN classifier was more resistant to noise with re-
spect to predictability within the data set. As κ decreases,
Fig. 6 indicates that for a fixed loss parameter λ, the recog-
nition loss expands faster for the HMM than for the kNN.
In Fig. 8, the energy consumption for a fixed ρ grows faster
and becomes more erratic for the HMM when compared
to the kNN. The HMM algorithm models the activities as
a Markov process [11], meaning that unpredictable feature
vectors not only affect prediction, but classification as well.
The kNN algorithm is only affected by κ through incorrect
sensor activations which reduce recognition.

Both classification algorithms are influenced by lower
values of κ due to sub-optimal sensor activations. The ef-
fect can be counteracted by increasing the number of classes
predicted ρ, improving recognition accuracy but reducing
the gain in energy. The parameter ρ controls the balance
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Figure 7. Recognition Loss and Energy Sav-
ings for the HMM (a) and kNN (b), κ=0.125

between risk and reward. High values of ρ mean less risk
but a smaller payoff, and lower values increase the win in
energy at the cost of recognition. The predictability of a sce-
nario can be easily obtained for real scenarios by taking the
accuracy of the prediction algorithm over the training data.
Once κ is known, ρ can be configured to counteract it and
select an appropriate risk level using Fig. 8 as a heuristic.

Once the risk and reward trade off between ρ and κ has
been found, the loss parameter λ can be assigned to opti-
mize the amount by which recognition may be reduced, and
thereby the amount of energy which is conserved. For ex-
ample, assuming a κ value of 0.5, ρ = 3 to counteract and
a loss parameter of λ = 0.2, a HMM incurs a loss of less
than 1.2 pp in recognition but saves up to 84.11% of energy
consumed without optimization. One caveat is that due to
the nature of prediction, the system may perform badly for
recognition of important but rare and unpredictable events.

6 Conclusion

This work proposes a novel method for recognizing hu-
man activities using embedded and wearable sensing sys-
tems. Human beings are repetitive and periodic creatures,
therefore what we do can be predicted to a certain extent.
Sensors which are not needed to decipher probable activi-
ties from each other can be turned off, conserving energy
without greatly impacting recognition rates.

The algorithms are simulated using a preexisting data set
[6], which is used to generate artificial scenarios with spe-
cific degrees of predictability. The results indicate that as
the predictability of activities decreases, the wrong sensors
are switched on and off, resulting in classification errors.
This effect can however be counteracted by adjusting the
number of activities which are predicted at each step, bal-
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Figure 8. Recognition Loss and Energy Sav-
ings for the HMM (a) and kNN (b), λ=8

ancing risk (loss in recognition) and reward (energy sav-
ings). Finally, the application’s acceptable loss parameter
selects how much recognition can be traded for energy. The
results indicate significant energy savings at low cost. For a
scenario with predictability of 0.5 and 3 classes predicted, a
loss parameter of 0.2 would incur a recognition loss of less
than 1.2 pp but save up to 84.11% of energy consumed.

7 The Next Steps

These results are being confirmed and extended using
other activity recognition data sets. Integrating a classi-
fication reliability measure would provide a heuristic for
estimating incorrect prediction/classification combinations
online in real time, and could potentially improve recogni-
tion rates. The indirect effects of missing data on prediction
(via classification) should be investigated. Furthermore, this
approach shows great promise for opportunistic energy sav-
ings when certain sensors are already in use by applications.
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