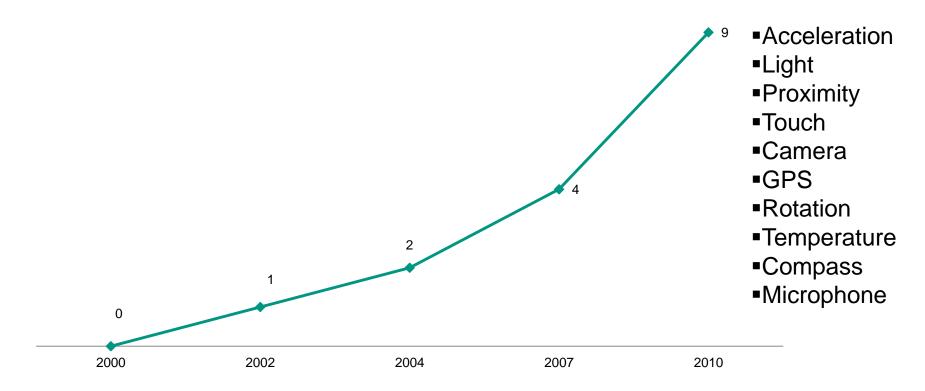


A Novel Micro-Vibration Sensor for Activity Recognition: Potential and Limitations 14th IEEE International Symposium on Wearable Computers

Dawud Gordon, Georg von Zengen*, Hedda R. Schmidtke, Michael Beigl Karlsruhe Institute of Technology (KIT), TecO *Technische Universität Braunschweig



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Sensor Modalities on Mobile Phones


How does the community know which sensor is next best thing, and how to use it?

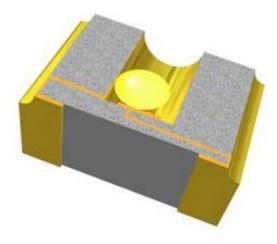
Recent advances in production techniques improve sensitivity

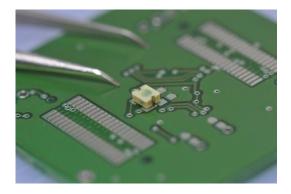
Sensolute GmbH <u>www.sensolute.com</u>

Devices have become sensitive and stabile

- Asks the question, what can we do with this that we couldn't before?
 - How does it compare with an acceleration sensor for activity recognition?

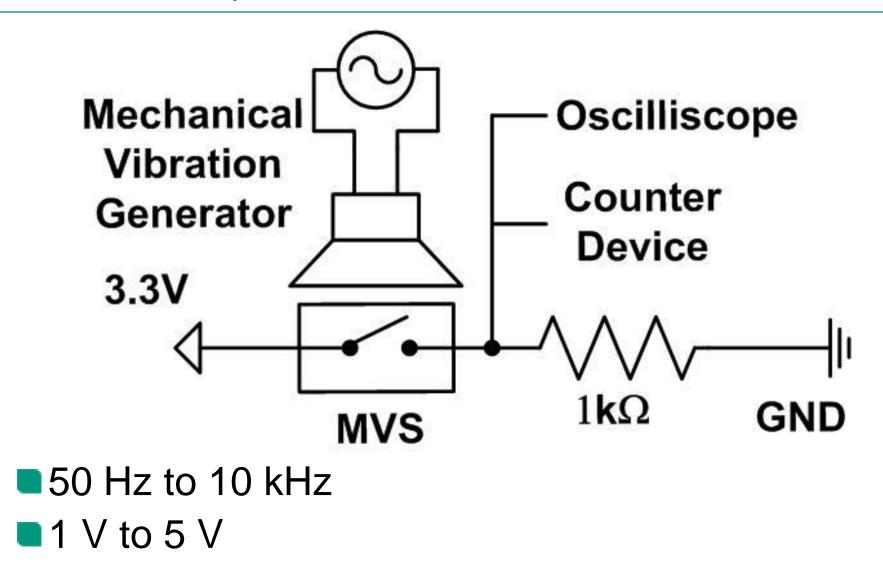
"The MediaCup: Awareness Technology embedded in an Everyday Object" Gellersen, Beigl, Krull, 1999 "Spine versus porcupine: a study in distributed wearable activity recognition" Man


- activity recognition" Van Laerhoven, Gellersen, 2004
- "Using rhythm awareness in long-term activity recognition" Van Laerhoven, Killian, Schiele, 2008

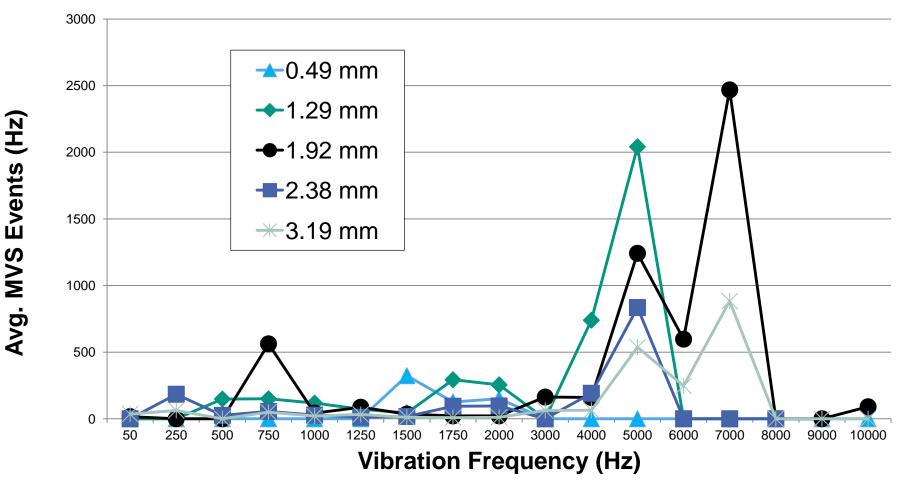


MVS 0608.02 2.45 x 2.85 x 1.7 mm Ball diameter of 0.8 mm Opens and closes a circuit Hermetically sealed chamber SMD – automatically mountable and solderable Cost: 1.75 USD

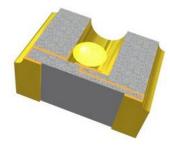
The Data stream



- Digital output signal from MVS
- Interesting units are the unary signal transitions: "events"
- Events summed over short windows to produce the amplitude of a cumulative wave
- This signal "comparable" to analog sensor output
- Sample windows can now be generated using a sliding or overlapping window



Vibration Analysis Results



Constant forced vibration vs **impulse**

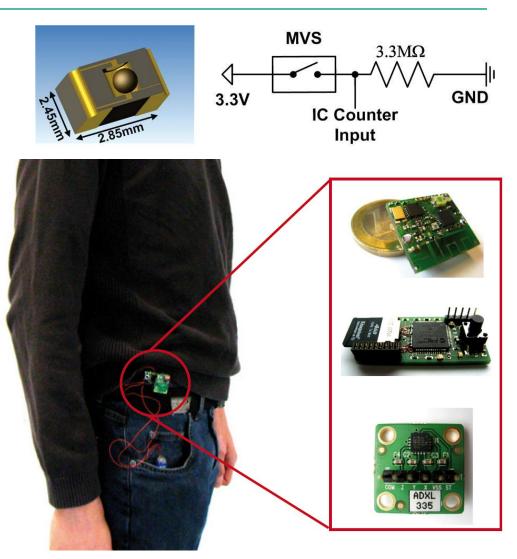
Vibration vs. Acceleration sensor

Micro-vibration sensor

- 1.75 USD
- 2.45 mm x 2.85 mm
- 1 resistor
- 1.5 kHz 8kHz
- 42 µW* @ 3 V

ADXL335 accel. Sensor

- **5.50 USD**
- 4 mm x 4 mm
- 4 capacitors
- .5 Hz 1.6 kHz
- 2 mW @ 3 V


Activity Recognition: Case Study

Technology for

Pervasive Computing

- 5 Subjects8 Activities
- 60 Hz sampling
 - Vibration
 - Acceleration
 - Light
 - Temperature
- 142 Minutes of data
- All parameters in paper
- Dataset available at: http://www.teco.edu/~ gordon/MVS/

- 3 classification phases
 - Phase 1: Personalized classification, all subjects, 80%-20%
 - Phase 2: Generalized classification, 4 vs. 1
 - Phase 3: Post-hoc sensing, light temperature acceleration, + MVS
- Classification using WEKA toolkit and three popular classifiers
 - K-Nearest-Neighbors
 - Naïve Bayes
 - C4.5 Decision Tree

Phase	Туре	IBk	J48	Bayes	Average	
No. 1	Personalized MVS	46.2	49.2	34.1	43.2	
NO. 1	Personalized ADXL	91.9	96.6	65.6	84.7	
No. 2	Generalized MVS	36.1	34.0	21.4	30.5	
NO. 2	Generalized ADXL	34.1	53.4	36.8		
No. 3	ADXL, Light, Temp.	92.8				
110. 5	ADXL, Light, Temp.,	96.6				

ADXL outperformed the MVS

Recognition drop from personalized to generalized

- 29.4% for the MVS
- 56.6% for ADXL
- 4% increase when adding the MVS

Acceleration Results in Detail

-	a Bus	b Bike	c Walk	d Jog	e Lift	f Type	g Stair	h Stand	
	96.9	0.16	0.4	0.1	1.4	0.2	0.5	0.3	a
	0.6	99.1	0.0	0.0	0.3	0.0	0.0	0.0	b
-	0.1	0.1	96.9	0.1	0.8	0.0	0.0	2.0	с
_	0.1	0.1	0.2	98.8	0.1	0.0	0.0	0.7	d
	2.2	0.0	0.3	0.1	92.8	0.1	0.6	4.0	e
	0.1	0.1	0.0	0.0	0.1	99.7	0.1	0.1	f
-	1.2	0.0	0.0	0.0	1.4	0.0	97.3	0.0	g
_	0.2	0.0	1.3	0.1	5.6	0.1	0.0	92.6	h

Personalized classification, C4.5 Decision Tree

- Overall 95.6% accuracy
- Standing and riding elevator
- Riding bus and riding elevator
- Generally good results

MVS Results in Detail

	a Bus	b Bike	c Walk	d Jog	e Lift	f Type	g Stair	h Stand	
	27.1	6.5	3.7	0.4	10.1	40.9	4.5	6.7	a
	9.1	49.2	12.5	0.9	5.5	2.5	17.2	3.0	b
-	2.1	4.7	57.6	8.4	5.9	0.3	20.8	0.2	c
-	0.6	0.9	9.9	79.1	1.8	0.2	7.3	0.3	d
-	7.2	3.6	11.3	1.5	26.0	35.6	10.8	4.0	e
-	2.6	1.5	0.8	0.4	1.4	90.9	0.8	1.5	f
-	3.5	7.6	21.9	9.8	9.0	0.6	47.1	0.6	g
_	5.8	2.0	1.0	0.5	5.2	77.8	1.1	6.7	h

- Personalized classification, C4.5 Decision Tree
- Activities which consist of impacts (footfalls, bumps, etc.) are better recognized due to their high frequency components
- Activities with slow or rounded movements have worse recognition rates
- The "Typing" anomaly: high classification rate with many false positives
 - Does not indicate that "typing" is easy to recognize
 - System minimizes error by classifying all sample windows with very little or no activity as typing

- The MVS can be used to sense concussions high-frequency vibrations
- Low cost in terms of size, consumption and price
- Can increase recognition rates in wearable systems
- But, it will not replace the acceleration sensor

Thank You!Questions?

