A Long-Term Sensory Logging Device for Subject Monitoring

Dawud Gordon, Florian Witt, Hedda Schmidtke and Michael Beigl

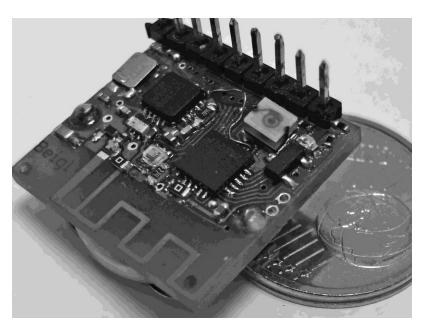
TU Braunschweig

Institute of Operating Systems

and Computer Networks

Distributed and Ubiquitous Systems Group

www.ibr.cs.tu-bs.de/dus


Motivation

Group focus: Pervasive Computing

- sensor networks: ultra-low power protocols/hardware (e.g. WoR, superimposing signals)
- context/activity recognition: non-personalized with high number of classes

Logging Device Requirements

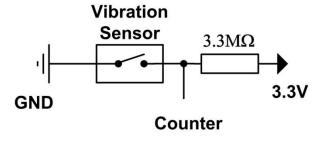
- Creation of context recognition data sets
- Local data storage (as opposed to transmission)
- Easily modifiable
 - Data preprocessing
 - File formatting
- Easy access to data

Dawud Gordon

Requirements and Hardware

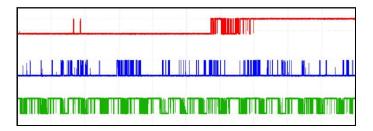
Lightweight for 24/7 wearable use

- < 25g w/ CR2477 >7 days
- < 50g w/ AAA >26 days
- Sensor board (Akiba)
 - PIC18
 - Light, Temperature, Vibration
 - 3 pin A/D external


Memory Board

- PIC32
- microSD
- 'Eject' button

85mm



Requirements and Software

- Software consists of two entities
- Sensor board software
 - Samples sensors
 - Preprocesses data (unit conversion etc.)
 - Minimal application
- Memory board software
 - FAT32 system on microSD
 - Communication with Sensor board (UART)
 - Card ejection and insertion

Demonstative Application

- Demonstrate sensing / preprocessing / saving
- Inspired by medical activity monitoring
- Classify activity level based on vibrational intensity
- 3 activities selected
- 2 subjects used to create thresholds
- 1Hz storage rate:
 - Sample (>10 kHz)
 - Calculate activity level
 - Save to memory board

Typing	Walking	Jump-Rope
0	648	1966
0	228	1266
0	594	2040
0	1000	2734
0	1188	1628
0	1444	1898
34	2172	1284
14	1506	1236
0	1484	1972
0	1262	1986

ID	Level	Repr. Activity	Levels
1	Low	Typing	≤ 550
2	Medium	Walking	551 - 1508
3	High	Jump-Rope	≥ 1509

Evaluation

- 3 subjects (2 + 1) used for evaluation
- 30s per activity per subject
- Mixed results:
 - Inter-personal variance
- Overall: 74% recognition
- Possible causes
 - Less than optimal thresholds (more training data)
 - Poor classifier (see further work)
 - Inter-personal differences (personalization)

• Rate of consumption: 4.478mW, >26 days 2 x AAA

	Subject 1	Subject 2	Subject 3
Low (Typing)	81	97	100
Medium (Walking)	72	69	86
High (Jump-Rope)	0	66	97

CLASSIFICATION RATES IN PERCENT BY USER AND ACTIVITY

CONFUSION MATRIX FOR CLASSIFIER OUTPUT IN PERCENT

	Low	Medium	High
Low (Typing)	95	3	2
Medium (Walking)	6	75	18
High (Jump-Rope)	2	43	55

A Lesson Learned

- Energy Consumption strongly dependent on microSD card
- Large variance between brands
- Energy consumption correlates with transfer speeds

	Nokia	Kingston 4GB	Kingston 2GB	SanDisk
Write	0.5µJ/B	3.05µJ/B	3.15µJ/B	0.27µJ/B
Read	0.1µJ/B	0.5µJ/B	0.53µJ/B	0.09µJ/B
Write speed	83.3KB/s	43.1KB/s	49.9KB/s	115.5KB/s
Read Speed	216.9KB/s	179.8KB/s	170.6KB/s	228.4KB/s

Further Work

Time synchronization of nodes

- Using our Beacon-based approach (~5us max drift)
- Base for communication present

Annotation

- HC interface for user input
- Keypad (chord)

Embedded classifiers

- C4.5 Decision tree
- kNN
- Fuzzy inference system

Thank you!

Questions?