A Study on the Use of Wireless Sensor Networks in a Retail Store

Dawud Gordon

TU Braunschweig Institute of Operating Systems and Computer Networks www.ibr.cs.tu-bs.de/dus

Table of Contents

- Introduction
- Trial Setup
- Requirements Analysis
- Results
- Conclusion
- Work in Progress
- Question and Answer

Introduction

- Evaluate WSNs in retail environment
- Authors
 - Dawud Gordon
 - Masayuki Iwai
 - Michael Beigl
- Trial implementation in Akihabara town, Tokyo
 - Created by Masayuki Iwai

Introduction (cont.)

Goals of study

- Gather experience
- Reduce development effort
- Open market for high-level developers

Methods: Requirements analysis

- Improve requirement definition
- Specify weak spots

Trial Setup

In-store front-end

- Network
 - Objects + nodes
 - Sink nodes/bridges
- Display
 - Monitor
 - Countertop

Central back-end

- Server-based client analysis
- Feedback to in-store system

Output

- To owner
- To client

Setup (cont.)

Setup (Cont.)

Requirements

Phase 1:

- Mr. Iwai application requirements
- Eliminates client/user stakeholder from this analysis

Phase 2:

- After Akihabara trial
- Document Mr. Iwai's needs

Requirements - Configuration

Application needs to adapt

- Changing conditions in store
- Market analysis
- Dynamic changes during runtime
- By developer/SmartStore server
 - Remote access from WWW (through firewall)
 - OTAC
- By store owner
 - Remotely from application within LAN
 - OTAC
- Multiple nodes at once + acked config
 - Allows reconfig of entire application
 - Saves time during development

Requirements - Sensors

Vibration

- Think ballswitch
- Differentiation:
 - At rest
 - In user's hand

Light sensor

- Large lux ranges
 - Bottoming out
 - Saturation
- Differentiation
- Store interior
- Store front

Requirements - Interactivity

Realtime input event reporting

- Allows systems to have interactive feel
- Delay detracts from user experience

Requirements - Power

- Battery changes effort-expensive
- Store's hours
 - System not active
 - Sleep mode
 - Save battery
 - Reduce maintenance
 - Manual override higher priority

Battery

- TTD
- Alert @ TTD = 24 hrs

Requirements - Range

- 2 scenarios present
- High-density
 - 10m sink-to-node
- Low-density
 - 40m sink-to-node

Requirements - Security

Problem: Config interference

- Broadcast affects all in range
- multiple apps
- multiple apps
- Grouping mechanism
- Inclusion
- NOT real security
 - Prevents interference, not attack

Conclusion

Trial provided good results

- Sensory
- Interactivity
- Power
- Range

System still too technical

- Programming @ HW
 - Bridge
 - Node
- Not accessable to high-level developers

Work in Progress

Abstraction from HW level

- Think: HTML
- Point + click

Akiba Sensor Node

- In development
- Will fulfill requirements

D-Bridge

- Prototype
- Embedded application
- Webserver

