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Abstract— In this paper, we present two methods for calibra-
tion of acceleration sensors that are inexpensive, in-situ, require
minimum user interaction and are targeted to a broad set of
acceleration sensor applications and devices. We overcome the
necessity of orthogonal axes alignment by extending existing
calibration methods with a non-orthogonal axes model. Our
non-orthogonal method can furthermore be used to enable
automatic calibration for 1- or 2-axes accelerometers or realize
a simultaneous mass-calibration of sensors with minimum effort.
The influence of noise to the presented calibration methods is
analysed.

I. I NTRODUCTION

Calibration is an important issue in sensor based systems
as it is the only way to ensure a predictable quality of
delivered information. Traditionally, calibration is done in a
process during production time. The process is very costly and
sometimes requires manual steps which makes it difficult to
lower costs at this point. Recalibration is necessary after some
time for most sensor systems and can often only be done at
particular sites and hence incurs additional high costs. Ubiq-
uitous computing environments differ in many aspects from
traditional sensing settings. Ubiquitous Computing devices
are used as peripheral devices disappearing from the user’s
awareness. Therefore it can be said that the majority of Ubiq-
uitous Computing devices will be factually and metaphorically
invisible [1]. As a consequence, users tend to ignore intense
device administration, even though operational conditions may
be extremely rigourous, such that errors due to neglected recal-
ibration accumulate. Furthermore, the circumstances of device
deployment in Ubiquitous Computing environments typically
sees them embedded into other objects, hindering access and
opportunity to perform mechanical recalibration. The amount
of computational devices deployed is also envisioned to be
on a higher scale in comparison to traditional sensor systems.
We refer to hundreds of devices spread in the environment,
comparable to the random distribution of low costs, everyday
objects and consumer electronics to date. This introduces new
challenges for management and maintenance especially for the
calibration and recalibration processes.

In research, this development has already started with the
instrumentation of everyday objects such as cups [2]. In
order to allow embedding, the devices must be very small,
priced in the cent range and absolutely maintenance free.
Costly calibration including high priced hardware is not an
option for these applications. Calibration has to be done in-
situ without user intervention and additionally has to be done

under the assumption that the sensor technology is cheap. A
widely used sensor technology in Ubicomp is the MEMS-
type acceleration sensor. The sensors are small and quite
accurate. Various platforms and applications that incorporates
them have been developed. Examples are Lancaster’s DIY
Smart-Its [3], TecO’s particle computers [4],the WearPen and
TiltPad [5]. Additionally, companies like Crossbow [6] and
Silicon Designs [7] offer products for easy integration of
accelerometers in other products even for 3-axial acceleration
measurements.

Fig. 1. 3-Axes accelerometer built out of 1-axis sensorsc© Silicon Designs
[7]

However, calibration is necessary, especially if acceleration
sensors are used collaboratively. For example, if a 2-axes ac-
celeration sensor device and a second 1-or 2-axes acceleration
sensor device are used together in one system - e.g. attached
to the same object - both devices can spontaneously form
a 3-axes acceleration sensor device. Many of the mentioned
platforms build their 3-axes acceleration sensors out of two
2-axes acceleration sensors that are orthogonally mounted.
One example is the mentioned design from Silicon Designs.
Figure 1 [7] shows how three 1-axis sensors are mechanically
combined to a three-dimensional acceleration sensor.

In this paper we present a method that allows us to
calibrate 3-axes accelerometers simply and simultaneously.
It also makes it possible to combine several 1- or 2-axes
accelerometers and to form a cheap 3-axes acceleration sensor
on the fly and then calibrate the underlying 1- or 2-axes
sensors. Such calibration can be done in parallel for many



combined 3-axes sensors:
Hundreds of these sensor devices can be calibrated simulta-

neously by just putting them into one box and calibrating them
all with only some measurements in different orientations of
the box. During the measurements, the 1- and 2-dimensional
sensors would build 3-axes accelerometers by virtually com-
bining them to 3D sensor systems. The main problem to deal
with in these setting is that the axes of the combined sensors
are not orthogonal but randomly oriented in the box. This
problem is not restricted to simple and cheap sensors it is also
a problem for most off-the-shelf 3 dimensional acceleration
sensors. The axes of the sensors are often not perfectly aligned
to 90◦ due to mechanical impreciseness. The model that is
presented in section IV presents a solution for such 3D sensor
calibration of sensors that have non-orthogonal axes either if
they are already assembled or are assembled on-the-fly to form
a 3-axes acceleration sensor.

One approach for in-situ calibration of3-axesacceleration
sensors involving the parametersoffset and scale was intro-
duced by Lukowicz et al. in [8]. They proposed a method for
the calibration that needs only some random measurements in
different orientations taking advantage of the earth’s gravity
field.

Our paper focuses on in-situ calibration methods espe-
cially regarding noise in the measurements and tilted (non-
orthogonal) accelerometer systems. We will extend the current
approaches in order to take care not only of offset and scale
within the calibration, but also of theorthogonalityof the axes.
The characteristic of in-situ calibration will be kept.

The paper proceeds with a short overview of calibration
methods involving only offset and scale. Section III investi-
gates the influence of measurement noise and tilted axes on the
methods. Section IV deals with non-orthogonal axes and gives
an extension of the traditional approaches. Implementation
consideration are covered in section V before we conclude
in section VI.

II. STATE OF THE ART CALIBRATION

In many applications there is a need for a calibrated accel-
eration measurement, but many sensors - especially MEMS
types - are not calibrated after production. Instead the sensor
have a sensitivitys and an offseto on each of their axes which
lead to measurements that do not represent the actual physical
value. Before presenting the two most important calibration
techniques, we define some expression used throughout the
paper:

· the physical acceleration is named as~x = (x, y, z)T . It
is measured in multiples of the earth’s gravityg
· the measurement offsets of the axes of sensors are named
ox, oy, oz and the scalingssx, sy, sz, whereas a perfect
system would have~o = ~0 and~s = ~1
· the values measured by an uncalibrated,orthogonal3D
acceleration sensor are named~u = (u, v, w)T ; uncali-
brated means here that offset and scaling errors are still
present in the measurements

· the values measured by acalibrated, non-orthogonal3D
acceleration sensor are named~r = (r, s, t)T ; calibrated
means here that offset and scaling errors have been dis-
covered and the measurements are corrected accordingly
· the interrelationship between measurements and real
physical values in an orthogonal system is for x-axis:
x = (u − ox)/sx;. For the y- and z-axis: the according
equations.

A. Rotational Calibration

The method is described in [9] and determines the offset
and the scale factor for each axis separately. Hereby, an axis
(e.g. the x-axis) of the acceleration sensor is oriented to the
earth’s gravity centre and kept stationary. It is exposed to 1g
and rotated and exposed to -1g. The measured values (in g)
in both positions areumax,x andumin,x. Solving the equation
system

1 =
umax,x − ox

sx

−1 =
umin,x − ox

sx

will result in the offsetox and scale factorsx for this axis:

ox =
umax,x + umin,x

2
(1)

sx =
umax,x − umin,x

2
(2)

In order to findumax andumin the rotation has to be carried
out very slowly to minimize the effect of dynamic acceleration
components. The accuracy of the method relies significantly
on the accuracy of the alignment.

B. Automatic Calibration

Another method for calibration of 3-axes accelerometers has
been presented in [8]. It does not require a certain series of
pre-defined positions like the method explained above and is
therefore very practical in mobile settings. It can perform a
calibration in-situ after a complete device has been assembled.
It is also suitable for fast mass-calibration as the sensor
virtually calibrates itself. The idea is to use the earth’s gravity
force as a known static acceleration on a 3-axes accelerometer
when a sensor has no dynamic component applied on it. Is this
state of being stationary detected the following equation (see
[8], page 2) is valid:

|~x| =
√

(x2 + y2 + z2) = 1 (3)

With the according offsets and scale errors of the accelerom-
eters, equation (3) extends to:

((u− ox)/sx)2 + ((v − oy)/sy)2 +
+((w − oz)/sz)2) = 1 (4)

With equation (4) the six unknown calibration variables
(ox, oy, oz, sx, sy, sz) can be solved when creating a six lined
equation system using six earth’s gravity vectors measured
in different orientations of the sensor. The six necessary
measurements should be significantly different from each



other to guarantee a stable convergence of the non-linear
solver. Additionally, it must be assured, that all three axes are
perfectly aligned to be orthogonal, otherwise the precondition
for the algorithm is violated and the results will be errorneous.

C. Concerns Using the Presented Calibration Methods

When calibrating acceleration sensors in MEMS technology
we generally experience the problem of noise introduced in the
measurement. Noise can have different reasons like thermal
noise, quantization noise or noise introduced by A/D conver-
sion. Noise during the calibration corrupts the measurements
and therefore results in imprecise calibration. It is necessary
to have a quantitative insight of the influence of noise to a
calibration process.
Further, the calibration of the axes’ angles isnot addressed
in either calibration method. A complete calibration of a 3D
accelerometer includes as well the calibration of the axes’
angles to 90◦ to be able to calculate the physical acceleration~x
from the measured value~u. Some settings (mentioned in sec-
tion I) show that it’s necessary to provide calibration methods
for tilted axes. Furthermore, the axes’ angles calibration is of
special interest for the automatic calibration method as the
orthogonality is the precondition for the validity of equation
(3). With titled axes, the automatic calibration method will not
work!

III. I NFLUENCE OFNOISE

It is impossible to avoid errors on the calibration due
to noise during the calibration process. To figure out what
negative influence on the calibration results must be expected
from a known noise level, we simulated different noise levels
with an even distribution and a maximum of 5, 10, 20 and 50
mg and applied them on virtual measurements before using
them in the two calibration procedures. Figures 2 and 3
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Fig. 2. Offset errors for simulated automatic calibration

show the accumulative error distribution of the calibration
parameter offset using the two presented calibration methods.
The offset errors are shown in absolute error, the scaling errors
in Figures 4 and 5 relatively. Reading out from Figure 2 with
parameternoise = 20mg at abscissaoffseterror = 50mg
gives the value 75. That means that statistically for 75% of
the calibrations that have a 20mg noise level, the offset error
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Fig. 3. Offsets errrors for simulated rotational calibration

in the results of the calibration will be less or equal 50mg.
The 75% can be regarded as the statistical trust level of the
offset error being less or equal 50mg in the calibration when
applying 20mg of noise on the measurement.

A quick example should show how the Figures 2 and 3 for
the offset errors can be compared to Figures 4 and 5 for the
scaling errors: An error of 10% in scaling would cause an error
in a measurement of approx. 100mg when stationary pointing
towards ground. Therefore, as a rule of thumb, 1% error in
scaling can be compared to 10mg in offset error. The graphics
are useful when a certain target accuracy is desired. Then, one
can read out what the (mean) necessary input accuracy should
be. For example, a desired target accuracy of 50mg in offset
and 5% in scale with a trust level of 95% would require a
noise level around 5mg using the automatic calibration.
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Fig. 4. Scaling errors for simulated automatic calibration

When comparing e.g. the 10mg noise curves of Figure
2 and 3, one can see that the 95% confidence level for
rotational method gives an offset error of around 100mg where
the rotational method reaches 8mg! On the first sight, the
rotational method would be the clear winner. But the result
needs to be interpreted in a broader context. The solver of
the non-linear equation array causes additional errors on the
automatic calibration. And the noise model on the rotational
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Fig. 5. Scaling errors for simulated rotational calibration

algorithm doesnot include the errors that occur when the
sensor was not measured in it’s minimum and maximum but
slightly off to these points. In [8] the authors gain a significant
improvement in accuracy by averaging a series of results of
one sensor.

IV. N ON-ORTHOGONAL AXES

As already mentioned, the calibration of axes is not sup-
ported by either presented calibration method. For the rota-
tional calibration, the axes are calibrated independently and
the offset and scaling calibration is not negatively affected by
angular displacement. For this reason, we propose an extension
of the rotational algorithm in section IV-B to calibrate possible
axes displacements as a second step after the standard offset
and scaling calibration.
For the automatic calibration method, it is a necessary pre-
condition that the axes are orthogonal. We simulated some
cases, where the angle was off by 5◦. These curves can be
found as dotted lines in Figure 2. The error is significantly
worse than without angular displacement, which motivates
the extension of the algorithm to be able to deal with non-
orthogonal systems.

A. Model of the Tilted Accelerometer Axes

The idea of the extension of the known equations and
algorithms to be used with non-orthogonal angles reflects
the wish to have three perfectly aligned accelerometers in
a bundle. As this is not always the case, a mathematical
conversion can simulate a perfectly aligned sensor array by
calculating thevirtual orthogonal values from the measured
andtilted values. For this conversion, the off-axis angles of the
acceleration sensor must be known. Figure 6 shows a euclidean
coordinate space{x, y, z} representing an ideal acceleration
sensor array. For simplicity and w.l.o.g. we assume that the
offset and scaling errors are not present and therefore only
model the direct relationship between the tilted measurements
~r and the real physical acceleration~x. Later, we can include the
offset and scaling errors to formulate an expression including
all negative influences. A vector~a would be exactly measured
with its three componentsx, y andz. But as the axes are not

orthogonal, the values measured by the acceleration sensors
(r, s, t) do not represent the correct 3D acceleration applied
on the sensor.

Fig. 6. Tilted Axes of accelerometers

The axes of the accelerometers have three levels of freedom
named asϕ, ρ and ϑ. For simplicity, we assume a sensible
setting where the three accelerometer axes are close to the
desired euclidean axesx, y andz and span anR3 vector space.
The axis of the accelerometers are namedr, s and t. W.l.o.g,
ther-Axis will be defined equal to thex-Axis. Then secondly,
the s-Axis will lie in the x-y-plane and therefore only have
one degree of freedom: the angle betweenr-Axis (x−Axis)
and s-Axis namedϕ. The tilted t-Axis has two degrees of
freedom:ρ and ϑ. The ϑ is the angle between the positive
x-Axis and a virtual plane that contains thez-Axis and the
t-Axis. The ρ defines the angle betweent- and z-Axis. It is
defined in positivex direction if ϑ = 0.
For the model, the first necessary formulas are the unit vectors
of the newr, s- andt-axes. They are (in the euclidean system):

~er =




1
0
0


 , ~es =




cos ϕ
sin ϕ

0


 ,

~et =




cos ϑ · sin ρ
sinϑ · sin ρ

cosϑ


 (5)

Generally, the measurement that a one-axis acceleration sensor
derives from an arbitrary acceleration vector is the acceleration
vector fraction, which is parallel to the acceleration sensor
axis. Therefore, an arbitrary acceleration sensor like the~a in
figure 6 needs to be projected in an orthogonal manner on the
r, s- and t-axis in order to find out what the according sen-
sors would measure. The measurements are namedar, as, at.
Notice that this projection is different from a coordinate space
transformation where the vector~a would be decomposed in
the directions parallel to the three axis. The projection from~a
on thes-axis is not parallel to ther − t-plane but orthogonal
to thes-axis!



Therefore, the next step is the projection of~a on the three
axesr, s and t. The auxiliary plane

E : ~es ◦ (~x− ~a) = 0

is intersected with the auxiliary even

g : ~x = λ~es

resulting in
λ = ~es · ~a.

This defines the orthogonal projection vector of~a on thes-axis
being

(~es · ~a) · ~es

and therefore its length being the measurement of an accel-
eration sensor pointing in~es-direction measuring an arbitrary
vector~a = (x, y, z)T . The length of this vector

s = |(~es · ~a) · ~es| = ~es · ~a =
v = x cosϕ + a sin ϕ (6)

Doing so equally for thew-axis results is

t = |(~et · ~a) · ~et| = ~et · ~a =
= x cosϑ · sin ρ + y sin ϑ · sin ρ + z cos ρ (7)

The solution for ther-axis is trivial:

r = x (8)

The three expressions (6),(7),(8) define the measurements
of the acceleration sensor carrying the tilt anglesϕ, ϑ andρ.
If a measurement is gathered with such a sensor, the virtual
values in an ideal orthogonal system could be calculated by
inversing the expression forr, s and t. This results in:

x = r (9)

y = s−r cos ϕ
sin ϕ (10)

z = t
cos ρ − r cosϑ tan ρ− (s− r cosϕ) sin ϑ

sin ϕ tan ρ (11)

Now, an interrelationship between the tilt angles of the
axesϕ, ϑ, ρ, the measurements(r, s, t)T and the real physical
acceleration(x, y, z)T has been found.

B. Using the Non-Orthogonal Axes Model

The results from the previous section can generally be used
in two ways: Firstly, they enable the automatic calibration
model to be used in settings where the axes are not orthogonal.
To do so, the expressions (9), (10), (11) can simply be put
in place of the measurements~u and in equation (4) to solve
for the - now nine - unknown variables (three angles, three
offsets, three scalings). It is therefore possible to extend the
automatic calibration method to systems with non-orthogonal
axes. Doing so, the simplified model of (9), (10) and (11)
without scaling and offset errors is extended to a model
including both the tilted axes and the offset and scaling errors.

Secondly, the results can be used to extend the rotational
calibration to a complete calibration including the axes’ angles.

The rotational calibration method itself is not vulnerable to
non-orthogonal axes systems as it calibrates the axes indepen-
dently through the use of the minimal and maximal values. But
it does not provide an easy way to also calibrate a possible axes
angle displacement. For this reason, we extend the rotational
calibration method after its completion (the offset and scaling
are calibrated) with three steps to calibrate a possible axes
angular displacement. For the following equations, the vector
~r is - like above - the measurement vectorincluding the
correction in scale and offset butnot including the angular
correction. The angle calibration process is as follows:

1. position the 3D sensor that the measurementsr = s =
0. As ther, s, x andy-axis all lie in the same plane (see
figure 6), the real physical values arex = y = 0, z = g.
With (7):

t = z cos ρ ⇔ ρ = arccos(
t

g
) (12)

2. position the 3D sensor that ther-measurement is
maximized. Then the real acceleration~x = (g, 0, 0)T ,
becausex andr have been defined to be parallel. In (6):

r = g cosϕ ⇔ ϕ = arccos(
r

g
) (13)

3. in the same position, but using equation (7) we get:

t = g cos ϑ sin ρ ⇔ ϑ = arccos(
t

sin ρ
) (14)

With these simple calculations, the three tilt angles can be
calculated using only one extra position for the sensor (the
position withu being maximized is anyway necessary for the
offset and scaling calibration). It is important to notice that the
angle calibration for the rotational calibration has to take place
after the calibration for offset and scaling has been finished as
we need both~x and~r for the calibration of the angles.

V. I MPLEMENTATION CONSIDERATIONS

Both previously presented calibration approaches are inves-
tigated for implementation on our particle computer platform
[4]. On the sensor boards we are using two ADXL210
accelerometers mounted orthogonal to each other for a 3D
accelerometer. Usually this mounting is done manually, which
denies an accurate positioning of the sensors to each other. In
the discussion we assume that data from the ADXL is provided
in the gravity unit g. Sampling the raw data from the ADXL
and converting them in g values can be done very quickly and
with a manageable complexity [9].

A. Rotational Calibration

The complexity of this method can be directly derived
from the equations (1) and (2). For each axis one has to
compute scale and offset by just one addition and one division
operation. Latter can be replaced by a right shift by one. The
anglesϕ, ρ and ϑ are computed by applying the arccosine
function.



B. Automatic Calibration

This calibration method requires solving a non-linear equa-
tion system with nine unknown variables. Standard mathemat-
ical literature proposes the Newton’s method for this problem:

F ′(xn)δ = −F (xn), xn+1 = xn + δ (15)

Hereby, F (xn) represents all nine equations written as a
(9x1) vector, xn = (ox, oy, oz, sx, sy, sz, ϑ, ϕ, ρ)T is the
calibration’s solution vector andF ′(xn) is the (9x9) Jacobi
matrix of all partial derivations ofF (xn). The method works
in 2 steps, which are iterated to produce better approximations
in each step:

1) solve the linear equation system (LES) (15) for an
auxiliary variableδ

2) compute next iteration solution byxn+1 = xn + δ

In the first iteration an appropriate vectorx0 as start value
has to be selected. Further, nine measurements of 3-axis ac-
celeration values(mx,my,mz)T gathered from nine different
positions are neccessary for the computation ofF (xn) and
F ′(xn). The following operations are necessary per iteration:

1) For compilation of LES: 121 additions, 163 multiplica-
tions, 80 divisions, and 7 trigonometric operations. The
Gauss algorithm solving this LES needs additional 292
additions and 321 multiplication operations.

2) For xn+1 computation: 9 addition operations

Newton’s method implies further constrains one has to take
care of. If using an inappropriate start value, then Newton’s
method can get stuck in an infinite loop without producing
improved approximations. One solution is a solver variation
called damped Newton’s method. Hereby, an additional con-
traction factor is introduced. As a result, the contraction speed
of the method will slow down. Math literature publishes strate-
gies for selecting this factor optimal. However, the damped
Newton’s method adds additional complexity for computing
this factor. In order to keep the overall computing effort
low, the number of iterations should be kept low. However,
to achieve a reasonable accuracy the stop criterion has to
be carefully selected. Usually, the computation is aborted, if
|xn+1 − xn| ≤ ε(ε > 0), wherexn is the approximated null
after n steps,ε is the accuracy requirement, and| | is the
euclidian distance. A reasonable result is often achieved in
less then 10 iterations if the method’s convergence order is
2. However, the damped Newton’s method will converge only
with linear speed implying more iterations.

C. PC vs. Microcontroller

Currently, we have implemented the automatic calibration
method only on a PC receiving the measured acceleration
sensor values from the particle computer sensor board (Figure
7).

The PC implementation of the automatic calibration coop-
erates with the particle computer. Latter delivers the measure-
ments for the Newton’s method as g values from all three
axes. Thereby the microcontroller already ensures that all
measurements are taken in stationary situations. The values

Fig. 7. Particle sensor board

are given in[mg] units. The challenge for the implementation
on the PIC18f6720 microcontroller of the particle computer is
the effort needed to achieve accuracy and speed. Although
addition and multiplication are done on this processor in
hardware, the internal registers only support 8bit integer op-
eration. But, for automatic calibration floating point operation
is mandatory. This implies more effort for each mathematical
operation. Furthermore, this also adds a certain extra memory
usage. In our experience the code size for arbitrary arithmetic
functions increases significantly when going from integer
to floating point or even including trigonometric functions.
Table I summarizes this observation with an arbitrary small
algorithm. All numbers are in bytes.

Integer Float
ROM 234 1292
RAM 13 50

TABLE I

MEMORY USAGE OF MATH FUNCTIONS[ IN BYTES]

As an alternative to the more complex, unsupervised in-situ
calibration we implemented a supervised calibration method
that is able to run on small microcomputer systems. The ro-
tational calibration we used here is significantly less complex
than the automatic calibration and therefore consumes less
memory and computing power resources. Using this method
we do not rely anymore on the availability of a PC based
backend program that was used to do the computational part of
the calibration process in the automatic calibration method. We
implemented the rotational calibration with a very convenient
user interface: the user needs only to roll the sensor board
over each axes (x,y,z) until the respective LED is switching
off. He is not requested to perform the movement in each
of the axes in a certain way, so also inexperienced users can
perform the calibration task. We studied the procedure with
three users so far. They where shown how to handle the sensor
boards and were then requested to calibrate the sensor systems
about 10 times without help. All of the users were able to
handle the task and all calibrations were done successfully. The
achieved accuracy with this method was extremely precise and
the calibrated sensors delivered values with deviation from the
actual physical values that are in the order of the noise level
of the hardware.



VI. CONCLUSION AND FUTURE WORK

In this paper, we presented two methods for the calibration
of acceleration sensors with minimum user interaction. We
extended the traditional methods with the capability to work
with non-orthogonalaxes to meet more practical requirements
in real world settings especially for Ubiquitous and Pervasive
Computing. We implemented and tested both methods. The
methods are now able to handle settings with cheap sensors
that have non-orthogonal axes and do not need any (expensive)
additional equipment or complicated procedure for calibration.
While the automatic calibration runs completely unsupervised
but requires some computing resources the rotational calibra-
tion is capable to run on small 8 bit microprocessors with
limited resources. Both methods allow to calibrate cheap ac-
celeration sensors in a convenient way without any additional
equipment. They are also able to combine three 1-dimensional
or two 2-dimensional acceleration sensors to a 3-dimensional
sensor on the fly. Another possible use of the methods is
mass-calibration of hundreds of sensors, as the calibration can
be done in parallel. We have shown throughout the paper -
backed up by practical experiments - that the results of the
calibration is very good (in the order of the noise level of
the hardware). Nevertheless, we are continuing our work to
eliminate the remaining error sources. We identified that the
solver for the non-linear equation is a major source for the
errors in the calibration results and will look into customized
solutions for this problem in the future.
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tion of body worn acceleration sensors. InProceedings of the second
international Pervasive Computing conference, Vienna, Austria, 2004.

[9] H. Weinberg. Using the adxl202 duty cycle output. iMEMS Technolo-
gies/Applications AN-604, Analog Devices, 1998.


