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Abstract—This paper presents a sensor-based, networked em-
bedded system, referred to as the Particle computer system. It is 
comprised of tiny wireless sensor nodes, capable of communica-
tion with each other, as well as connectivity with backend, PC-
based systems, thereby facilitating software development and 
data analysis in an integrated systems package. The core design 
principles of the sensor nodes enable operation in very mobile 
settings and truly ad-hoc, peer-to-peer interoperation without the 
intervention of a master or explicit middleware layer. The two 
main system properties highlighted in this paper are: 1) informa-
tion distribution to all components within the system and 2) the 
usage of a common communication language in all system com-
ponents. This language has been proprietarily developed for the 
Particle system and is known as ConCom. As a result of these 
system properties, we have found the Particle system to be very 
extensible and applicable in many everyday scenarios. The paper 
presents insights to the implementation of the Particle computer 
system, including software development and data analysis capa-
bilities, and the overall system integration. 

Keywords – Particle Computer, AwareCon, ConCom, 
Middleware-free Architecture, Sensor Network, File System 

I. INTRODUCTION 
The Particle computer system (details found at 

http://particle.teco.edu) is the result of intensive, long-term research. 
The current system has its roots in the EC funded Smart-its 
(http://www.smart-its.org) project, which started in 2000 and ended in 
2003. Within the Smart-Its project a concept for a generic platform 
appropriate for embedding computation in the real world was devel-
oped and implemented as three concrete prototype platforms. The 
resultant devices, originally called Smart-Its, were small, embedded 
devices, allowing attachment to everyday objects, augmenting them 
with sensing, computation and communication capabilities. Subse-
quent to the project’s conclusion, the authors of this paper resolved to 
refine and enhance the prototypes, leading to the Particle platform 
described in this paper. The paper continues by motivating the design 
principles of the Particle computer and then proceeds to discuss its 
core computing, communications and sensing technology in section 3. 
Section 4 reverts to a broader picture of the system, with a focus on 
integration, while section 5 explains the development and data analy-
sis issues that arose. The paper concludes with a short experience 
report in section 6 and a future work in section 7. 

II. MOTIVATION 
Networked sensor systems are becoming very popular as base 

technology for many military, industrial and home applications, such 
that generalized platforms for supporting the prototyping, analysis and 
ensuing development of these applications is in high demand. One of 

the more popular platforms to have emerged from collaboration be-
tween academia and industry is the Berkeley Motes [8], whose devel-
opers can claim a rich research history, including the area of distrib-
uted data processing within sensor networks. Communication is 
organized using the concept of active messages [9], which facilitate 
automated network organization based on the building and mainte-
nance of a routing tree between all nodes. The backend system, such 
as a PC, has a special role as the controller of the tree’s root node, 
imposing a hierarchy on the overall system. 

The Particle system shares some similarities with the Motes, yet 
there are fundamental differences stemming from the development 
goals. In particular, the Particle computer system targets highly mobile 
settings, where many wireless sensor nodes encounter each other and 
exchange data over a relatively short period. An example of such a 
setting is in an office, where lots of people interact with each other and 
with their environment in order to make appointments, organize and 
schedule meetings, or to support collaboration during meetings. Con-
sequently many everyday items and objects, including tables, chairs, 
pencils, notepads, office machinery and others, are interacted with and 
carried by people in efforts to collaborate and complete their everyday 
tasks. We identified more than 450 such items in a regular office, both 
purposely and inadvertently transported by office workers, for usage 
in planning, meeting, developing ideas, or even in more casual situa-
tions. As these items are already part of the everyday, productive 
office interactions, they provide a valuable source of analysis informa-
tion regarding the dynamics of tasks within the office environment and 
subsequent development of solutions for enhancing the interactive 
experience with these items. This however requires unobtrusive sens-
ing or task, activity and environment properties, as well as a means of 
exchanging and interpreting this potentially explosive set of data. We 
therefore designed the Particles nodes with these requirements in 
mind, such that attachment to various objects like chairs, windows, 
doors, pens, video projectors and other devices, items and even peo-
ple, various control tasks and systems in the office environment can 
make more informed decisions. Secondly, by collaborating with each 
other, the nodes report environmental conditions or intrinsic states and 
may decide appropriate actions based on rules defined for the man-
agement of the environment. Consider automating the decision to 
close the jalousie if the video projector is switched on, or take a pic-
ture of the whiteboard when the pen is laid down. The deployment 
properties and rules will vary in different environments, such that the 
feature of ad-hoc collaboration between sensor nodes is desirable. 
Ideally no master should be required or previously selected, as the 
network should be organized in a peer-to-peer fashion, enabling the 
mutability of collaboration possibilities for highly dynamic tasks. 
However, in cases where information from backend systems in a LAN 
infrastructure is needed or applications in this infrastructure should be 
supported, the Particle nodes should be seamlessly integrated in this 
infrastructure. Consider a calendar application that needs to be up-
dated when a spontaneous meeting is detected in a previously unre-
served room. In order to support these goals a very pragmatic design 
principle has been applied, namely, “there must exist a direct means of 



communication between all system components”. An appropriate 
radio protocol for the sensor nodes should incorporate this principle in 
order to support high mobility and ad-hoc collaboration. Similarly, the 
backend integration requires that the interaction between nodes and 
the PC-based systems is based on a consistent, common communica-
tions interface. This is achieved by two mechanisms: 1) distribution of 
all information within the system and 2) a common communication 
language. Both mechanisms combined enable communication that is 
understood by all components without any conversion or mediation 
through a third party such as a middleware. As a result, the system 
architecture can be defined as being “flat”, yet portrays loose coupling 
and high cohesion with its distributed approach, which removes the 
conceptual border between sensor nodes and backend systems. This 
implies that every component in the system can be conceptually con-
sidered as another Particle node. Application Programmers would 
appreciate the systems uniformity in this respect, as they could flexi-
bly shift between using the Particle nodes as pure sensor value pro-
ducers and situations where the nodes operate collaboratively. Even in 
the case of hybrid application design where functionality is imple-
mented on the nodes and also within the backend, a programmer will 
always have direct control over the communication. This similarity of 
software components and sensor nodes enables a straightforward, but 
still very flexible approach for developing distributed applications 
with the Particle system. This is needed for the expected diversity of 
applications in such agile domains like the office domain. 

III. PARTICLE TECHNOLOGY 

A. Particle Computer Hardware 
The Particle hardware follows the engineering concept of separa-

tion of concerns. In doing so, a Particle node consists of two boards - 
one for containing the communications functionality and the other for 
other utilities of the node such as sensing. The communications board 
is shown in Fig. 1, and implements the Particle’s wireless networking 
functionality. The board’s dimensions are 15x48 millimeter and it 
includes a PIC18F6720 microcontroller running at 20 MHz (5 MIPS), 
a TR1001 transceiver enabling a data rate of 125kbit/s on 868 MHz, a 
512KB flash memory, a real-time clock (RTC) and a power circuit, 
which employs a power supply compatible with a single, regular AAA 
battery. Additionally, the board comprises two LEDs for visual indica-
tion, e.g. communication status, and a speaker for audio notification. 
Running on a single 1.2V AAA rechargeable battery the board con-
sumes on average 40mA with the communication and the LEDs ac-
tive. 

 

Figure 1.  Particle communication board 
 (transceiver, external flash memory, speaker on the backside) 

Particle communication boards can be connected to additional 
boards via the onboard connector, such that the core Particle hardware 
functionalities can be extended. The onboard connector provides a 21-

pin interface to the microcontroller’s I²C and serial communication 
capabilities, several digital I/O pins and pins for analog measurements 
through the microcontroller’s analog-to-digital converter. The connec-
tor further provides the supply voltage for these boards. In [1] an 
analysis of various applications for sensor nodes identified and classi-
fied the selection of sensors commonly used for measurement and 
deriving information from the environment. This motivated the selec-
tion of an acceleration sensor, a temperature sensor, a light sensor and 
a microphone on a typical sensor board of 17x22 millimeter (Fig. 2a). 

 

Figure 2.  (a) Sensor board with light, temperature, acceleration and 
microphone sensor, (b) Sensor board with additional microcontroller 

(backside) and force sensor 

The sensors on the board in Fig. 2a are directly connected via both 
boards’ connectors to the microcontroller of the communication board. 
In addition to the networking tasks, the microcontroller samples and 
aggregates sensor information, e.g. computing of the average tempera-
ture over a period of time. In this case, one could argue that this vio-
lates the separation of concerns principle, as proposed at the beginning 
of this section. However, it is shown that by interconnecting another 
sensor board (Fig. 2b), which includes its own microcontroller, here a 
PIC18F452, the sensing and communication functions are easily 
separated. Important to note is the role of the connector on the boards. 
It enables the successful separation and is therefore required as a 
constant part in the hardware design. The implementation of the sepa-
ration also leads to an inherent distribution of functionality and con-
tributes to defining the flexibility of the Particle computer hardware. 
This is one of the success criteria for the Particle system, since the 
hardware can then be utilized in various scenarios covering a huge 
domain for sensor network applications. There are also other boards 
that exploit this functional separation, including the so-called “break-
out boards” for easy connection of peripheral sensors and hardware, 
serial boards and USB boards for communication with other systems 
via RS232 and USB protocol, and power boards for extending the 
available power supply. An important additional board is the “bridge 
board” (Fig. 3), which enables communication between Particle nodes 
and other computing systems over a UDP network.  

 

Figure 3.  Particle bridge 

(a)

(b) 



B. Particle Communication 
The communication board runs a customized communication pro-

tocol AwareCon [2] especially designed for ad-hoc communication, 
with a design that follows the fundamentals of the established 
OSI/ISO layered approach. The layers include physical radio layer, 
(RF) Link Layer (LL) and the Application Convergence Layer (ACL). 
Several features have been implemented in order to obtain a special-
ized protocol for distributed networked sensor system and the proper-
ties of the Particle’s target application environments. Mobility was an 
important aspect for the protocol design and as a result AwareCon is 
able to handle high mobility of nodes. In Fig. 4 the delays until a 
single node was synchronized with the network or with another single 
node were measured and shown as a distribution. As a result, we 
found that the synchronization with a new network in range takes 
typically around 12ms. The mean delay for the synchronization with 
another single partner is around 40ms. 
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Figure 4.  Distribution of synchronization times 

Once synchronized, nodes exchange synchronization signals in a 
random and distributed manner and establish a common time slot 
scheme. With a common time slot established they can immediately 
exchange data. With this fast and self-organized synchronization 
AwareCon is suitable for highly mobile environments.  

 

Figure 5.  AwareCon time slot 

Fig. 5 shows the slotted TDMA structure of AwareCon with its 
13ms time slot. The design of AwareCon also reflects the concept of a 
fully distributed system. Nodes all have equal responsibilities to estab-
lish time slots, exchange synchronization signals and keep an estab-
lished timing scheme alive. There is no access point or master devices 
like in W-LAN, Bluetooth or many other known protocols. The chan-
nel access uses a nondestructive bit wise arbitration known from 
wired networks such as the CAN field bus. This access method 
achieves outstanding low collision rates especially for high number of 
concurrent nodes. It is also known for its good capabilities to handle 

priorities. Since only bits need to be signaled, the arbitration slot can 
be very short. However, the scheme imposes hard requirements on the 
hardware, since the Particle node’s TR1001 RF front-end has to be 
constantly switched between sending and receiving mode. We com-
pared the probability of no collisions of the AwareCon arbitration with 
the traditional CSMA scheme of W-LAN in order to illustrate the 
performance of AwareCon during the arbitration. The following figure 
depicts the probability of no collisions for an increasing number of 
nodes that have concurrent send requests. Thereby, AwareCon uses 10 
arbitration slots and the W-LAN arbitration 50 slots. 
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Figure 6.  Probability of no Collisions for W-LAN and AwareCon arbitration 

The data traffic is organized in packets of 64Bytes data payload. 
Each time slot of AwareCon can carry one packet of data. Several 
energy saving mechanisms have been introduced to AwareCon of 
which the most important one is the so-called early shutdown. Seman-
tic data filtering [10] enables nodes to interrupt and cancel a running 
packet reception at an early state before the transmission is completed. 
Thereby, an application on top of AwareCon can subscribe to the data 
that concerns its logic. During reception, incoming data is analyzed 
and matched according to these local subscriptions. In case of a mis-
match the nodes can turn off their radio front-ends or even go into 
sleep mode until the next timeslot and thereby save energy. According 
to Fig.5 this cross-layer approach would save up to 91% if the node is 
set to sleep until the next slot. As the protocol is mainly implemented 
in software and runs on the same processor like the application, 
AwareCon foresees a certain time in each timeslot with no protocol 
activity to always guarantee a percentage of >33% of the CPU time for 
the application even during high data traffic times. 

C. Particle Computer Software 
Further capabilities of the communication board are encapsulated 

in the system library. It provides system functions for a basic configu-
ration of the microcontroller’s general I/O pins and I²C and serial 
communication subsystem, basic access methods for the analog-to-
digital converter and the internal EEPROM of 1KB as well as the 
external flash memory. It further provides methods for reading and 
setting the onboard RTC. In case the sensors are connected to the 
communication board, an additional sensor library is used on top of 
the system library utilizing these system functions. The sensor library 
includes drivers for sampling previously mentioned typical sensors, 
such as an acceleration sensor, an I²C temperature sensor, a light 
sensor and a microphone. The time synchronization of the communi-
cation stack works virtually like a scheduler, leaving 4.5 milliseconds 
for sensor sampling before the next communication phase starts again. 
The drivers have to be aware of this constraint, as it will affect for 
instance a series of consecutive samplings. Recently, the Particle file 
system [5] was implemented on top of all libraries. Representing all 



resources, such as communication, sensors and memory as files en-
ables a uniform access via only two functions read(..) and 
write(..). The Particle file system is a hierarchical access struc-
ture, which also allows the file-based representation of the API of the 
system library. All files can be shared among Particle nodes, establish-
ing a concept of distributed software among them. 

IV. THE PARTICLE SYSTEM 
The Particle system view (Fig. 7) depicts the Particle technology 

as a lower layer and the backend system components as a higher-level. 
The latter communicate with other components via UDP or to Parti-
cles nodes via bridges. The communication between Particle nodes in 
the technology layer is reflected as UDP broadcast communication in 
the backend layer. Thereby, information from the nodes is distributed 
to all backend components connected to one LAN.  

ParticleAnalyzer Over-the-Air-
ProgrammingParticleDB

Particle
Location
System

Bridge

ConCom
(AwareCon)

TimeService

Particle Technology

Backend Components

UDP Network

libparticle

ConCom
(UDP Broadcast)

ConCom
(AwareCon)

ConCom
(AwareCon)

Particle Node

Particle Node

libparticlelibparticlelibparticlelibparticle

 

Figure 7.  The Particle System 

Typical backend system components are permanent services such 
as the time service (provides the actual time by request of setting the 
RTC on the core board), the ParticleDB (logs all message communica-
tion of Particles nodes), and the Particle Location System [6] (imple-
ments a cell-of-origin location system utilizing the bridges). Other 
components support the development and data analysis processes: the 
ParticleAnalyzer serves as the real-time monitoring tool, and Over-
the-Air-Programming allows an application specific in-situ update of 
the Particle computer software. Again it is to be noted that the Bridge 
does not constitute a “mediating middleware component”, as there is 
no semantic translation between the Particles nodes and the backend 
components when communicating across the bridge. The bridge is just 
another Particle node with no exceptions. The same is true from the 
perspective of backend components for the communication with Parti-
cle nodes. This design results in a flat system architecture. 

A. ConCom 
As a consequence of this flat architecture a common communica-

tion language between all components is required. In the Particle 
system the proposed approach is ConCom[10]. ConCom represents 
data in a strictly typed form of tuples. A tuple starts with a type identi-
fier (3 bytes), followed by a length statement (1 byte) and then a num-
ber of data bytes specified by the length. Tuples can be concatenated 
to sentences. Thereby, the first tuple is referred to as the subject. Fig. 8 
illustrates a ConCom sentence. Type identifiers are freely selectable 
and enable a flexible and expressive way to describe the data. In the 
example above the sentence is originated with a subject ABC addi-
tionally containing version number 1 and continues further with tem-
perature data identified by STE (sensor temperature) of 23.5 degrees 
Celsius. However, the structure in sentences is rather flat, such that 
complex statements may prove difficult to describe by a combination 

of other tuples. In these cases new tuple types have to be introduced 
describing the complex statement as a block of encoded data, as op-
posed to a more expressive tuple concatenation. The notion of a sub-
ject in ConCom enables application specific processing of data within 
the system. Each application running on the Particle nodes and on the 
backend components is identified by its subject. An application sub-
scribes itself to a subject and filters thereafter all received information, 
while the procedure for sending from the application uses the subject 
as the prescript of the outgoing message. This enables various applica-
tions, distributed across multiple Particle nodes and backend compo-
nents, to operate in one Particle system at the same time without data 
interference. As a result, type identifiers differing from the subject, 
can be reused in other meanings within the context of the respective 
application. ConCom is in this sense the consistent, underlying coor-
dination model employed throughout the Particle System. The packets 
communicated between Particle nodes on the lower layer, between 
backend components and across the both layers use the ConCom 
format. Without middleware, ConCom tuples enable a type safe way 
to communicate a diversity of data, ranging from various sensors to 
data resulting from computing processes on any layer and component 
in the Particle system. 
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Figure 8.  Example of a ConCom Sentence 

B. Backend Components 
In this section we return to discuss the upper layer backend com-

ponents of the Particle system, as depicted in Fig. 7. Each component 
possesses a common interface referred to as libparticle for the com-
munication with Particle nodes or to other components. The libparticle 
is a cross platform library written in C for Windows and Linux sys-
tems. It is a functional part of each backend component and handles 
the UDP broadcast communication, providing functions for creation, 
parsing and filtering ConCom sentences. As a consequence, backend 
components can be distributed throughout the UDP network and 
operate independently. The backend components therefore follow a 
similar distributed approach to the Particle nodes. 

C. Scalability of the Particle System 
Although we have motivated the advantages of complete informa-

tion distribution and language uniformity throughout the Particle 
system, we also considered some of the disadvantages of this architec-
tural decision. One of the issues we considered is that of scalability, 
given that we have already shown in Fig.6 that the AwareCon protocol 
scales very well and is able to handle many concurrent send requests. 
The problem of scalability mainly arise at the bridges due to the 
bandwidth differences between the backend and the Particle nodes. 
Considering a regular bandwidth of 100MBit/s in a LAN and the 
125KBit/s of the Particle nodes, we concluded that 800 Particle nodes 
would be required in order to exceed the LAN’s bandwidth. Since the 
arbitration of AwareCon prohibits 800 concurrently sending Particle 
nodes in one Particle network, this mass can only be generated by 800 
bridges forwarding data concurrently into the LAN. We therefore do 
not place emphasis on investigating scalability issues in this regard. 
Nevertheless, in cases where backend components send ConCom 
sentences at a high rate they may create a situation of overloaded 
bridges. A solution to this problem is given in [3] where the informa-



tion distribution is restricted to certain, semantically defined spatial 
regions. The bridges in the system implement a filtering on such re-
gion-descriptions in order to approach the scalability issue. Particle 
nodes can easily be located in such regions through “pings”, which 
triggers them to send a response. Received by a bridge, this message is 
preceded by the region description of that bridge. Backend compo-
nents have to precede their ConCom sentences with this region de-
scription in order to communicate with the Particle nodes in that re-
gion. Particle nodes themselves are not aware of this scheme. 
Although this addresses the scalability problem, it has an effect on the 
communication of very mobile Particle nodes, since they may change 
their region before the backend has located and communicated with 
them. In order to estimate the effect of region based communication 
on mobile nodes, we can use the round trip time (RTT) for the com-
munication between backend and Particle nodes. Assuming that the 
smallest region is around one bridge – this would address the scalabil-
ity problem at best – we can determine the maximum speed of the 
node in order to be reachable by the backend in that region. If that 
speed is exceeded, the backend would send a ConCom sentence to a 
region which the receiving node has already left. In this situation the 
system would not be able to handle the mobility anymore. For a RTT 
of 100ms and circular region around a bridge with a diameter of 10m 
and placing the node in the middle between region border and the 
bridge, the maximum speed would be 25m/s. This is sufficient for 
office environments as the primary application domain of the Particle 
system. 

V. DEVELOPMENT AND DATA ANALYSIS 
In this section we illustrate how to use the distributed system ap-

proach in order to develop applications with the Particle system. For 
testing and evaluation of those applications appropriate debugging and 
analyzing components are presented. 

A. Particle Development 
As the first step in the development of a new Particle application 

the developer selects an appropriate ConCom subject. In each com-
munication this subject precedes the sentence and separates the new 
application from the parallel running ones. The consistency of subjects 
is ensured by a type file containing all used ConCom types and their 
meaning in the context of their respective application. This type file is 
managed by a type manager implemented as a backend component. A 
developer registers the selected subject and includes the created type 
file in his application. The decoupling achieved does not require the 
type manager during the runtime of an application and therefore main-
tains the completely distributed approach of the Particle system. The 
actual programming elements comprise both application development 
on Particle nodes and backend programming. Both are usually done in 
C since this language is supported on all layers through the system. On 
Particle nodes the application development preferably utilizes the 
uniform access to sensors and the communication stack, which is 
provided by the Particle node’s file system. Consider the following 
sample expression: write(“/dev/awarecon”, 
“/dev/STE”). This reads the temperature sensor (abbreviated by 
its ConCom type) and writes the reading in ConCom format on the 
communication stack, AwareCon, which completes the transmission. 
Communication with backend components is integrated seamlessly 
through the use of ConCom, easing the application design for the 
developer. Once the application for the nodes is compiled, it is trans-
ferred to the specific nodes via Over-the-Air-Programming (OtAP). A 
predefined ConCom subject in conjunction with an identification of 
the specific node ensures that the code is downloaded to the one the 
developer selected previously. The system library of each node appli-
cation supports OtAP as an integral part, i.e. there is no Particle node 
program without this capability. OtAP is an essential part of the devel-
opment process because it enables the in-situ reprogramming of nodes 

while being integrated in an application scenario. Besides the applica-
tion code OtAP comprises the complete system image resulting in lots 
of redundant code to be downloaded. Realizing this, Particle nodes 
provide a virtual machine (VM) as a second way to developing appli-
cations. The developer programs on a PC using a Basic-like language, 
which is then compiled to an intermediate byte-code. The byte code is 
downloaded utilizing the OtAP semantic to a specific Particle node 
running the VM. It is possible to store more than one program on a 
node and select the one which should be executed. Byte code for a 
simple application is transferred within 5 seconds, while the transfer of 
a comparable one including the system image takes 85 seconds under 
best conditions. In particular, if there are several programming proc-
esses running concurrently, the VM based programming contributes 
definitely to scalability of the overall system, since the number of 
exchanged messages is reduced. For comparable programs this results 
in a reduction by a factor of 1/258. However, in general it is common 
for VM approaches to consume more energy in long-term settings 
annihilating the savings for fast program transfer. Further, applications 
run slower since the code needs to be interpreted.  

The development of backend components utilizes the libparticle. It 
shields thereby the details of the communication process and ensures 
via ConCom the seamless information exchange to other backend 
components as well as Particle nodes. However, the developer should 
be aware of the bandwidth differences between backend and Particle 
nodes. If packets are permanently sent at a high data rate from the 
backend, the usage of the region-based communication from section 
IV.C is recommended to maintain the scalability of the system. Never-
theless, short burst can be buffered by the bridge. Once developed and 
compiled, the backend component can be deployed on any computer 
system within the UDP network. The seamless integration of backend 
components without a middleware layer enables a powerful online 
debugging. Thereby, an application runs on a Particle node and the 
debugger runs within the backend. In order to allow the debugging of 
the distributed applications, the debugger needs to be integrated in the 
environment of the application. Our system architecture exactly en-
ables this behavior as there is no obvious border between the backend 
and the Particle nodes. This allows the debugger to directly communi-
cate with the nodes and basically hook into the running distributed 
application. The debugger enables the tracing of function calls, the 
watching of variables and complex data types like C structs, and the 
use of assertions. All debugging information is communicated via the 
AwareCon communication stack during this process to the debugger in 
the backend. Similar to the OtAP approach a pre-selected ConCom 
subject was used to identify this information and to separate the de-
bugging process from the application specific communication. Sharing 
AwareCon for debugging and the application limits the usage of the 
debugger on code outside the strictly synchronized communication 
interface. Nevertheless, the approach allows to directly trace the exe-
cution of distributed applications just like as another Particle node 
would see the application. This was firstly applied during the devel-
opment of the file system and helped to achieve a stable and powerful 
implementation.  

B. Data Analysis 
During the application runtime, Particle nodes and backend com-

ponents communicate with each other. In order to support evaluation 
of the application, as well as for logging and analyzing purposes of 
sensor readings, we have developed the ParticleAnalyzer and the 
ParticleDB. The ParticleAnalyzer (Fig.9) is an all-round tool intended 
for real-time analysis. ConCom sentence are parsed and sensor infor-
mation is plotted in real-time graphically as well as on a console for a 
detailed view. 



 

Figure 9.  ParticleAnalyzer plotting acceleration data during a rotation of a 
Particle node 

Various filters on ConCom types can be applied immediately in 
order to separate the data for plotting. The broadcast nature of com-
munication allows the analyzer to passively identify Particles nodes. 
While the AwareCon synchronizes the data transfer on the radio chan-
nel, the bridge and the computing system running the ParticleAnalyzer 
impose a non-deterministic delay until sensor data is plotted. This can 
cause distortion of the real-time nature of the data. If the ConCom 
sentence contains a time stamp tuple from the Particle node’s onboard 
clock, the analyzer can use this information to plot the sensor data 
correctly. The analyzer links also to the OtAP component, combining 
in this way the easy selection of Particle nodes and in-situ reprogram-
ming. The ParticleDB (http://www.teco.edu/projects/particledb) is a 
permanently running backend component which creates a huge ar-
chive of all communication going on between Particle nodes. As a 
result it provides the opportunity for an analysis of long term data. A 
query template on the WWW enables an comfortable way to query for 
data using various possibilities to filter them. Returned data can be 
browsed or optionally can be exported to a comma-separated format 
for import in other applications. 

VI. EXPERIENCE 
Our permanent test bed for Particle applications is the AwareOf-

fice (http://www.teco.edu/awareoffice), where various objects are 
augmented with the nodes. The chairs register human beings sitting on 
them and this information controls an electronic meeting doorplate. A 
whiteboard pen detects interactions like writing, playing or being laid 
down and triggers a video annotation system. In [4] and in the accord-
ing video we demonstrated how to build intelligent office environ-
ments with the Particle computer system. Objects like chairs, office 
items and people were equipped with the Particle nodes. The system’s 
flat architecture enables for such setting a very quick and easy setup. 
Applications incorporated ad-hoc collaboration between sensor nodes 
or collaboration with the backend components and could be deployed 
within several minutes. Since all information were distributed to all 
components, i.e. sensor nodes and backend, and all of them can com-
municate directly to each other utilizing ConCom applications start 
operating without the setup of mediating components usually found in 
middleware systems. With the DigiClip [6] we investigated the con-
texts of physical documents and tested new sensors, for instance a 
capacitive page count sensor, by exploiting separation of concerns, 
which underpins the hardware design.  

Several labs around the world already bought Particles, amounting 
to several communication boards and supplemental hardware. A suc-
cessful result was the RELATE project in cooperation with the Lan-
caster University. Particle nodes utilized ultrasonic transducers as 
sensors and computed in a distributed approach the relative position to 
each other. An example application of this system can be found in 
[11]. Recently, OCE (http://www.oce.com) an office solution provider 

from the Smart Surroundings project (http://www.smart-
surroundings.nl) approached us in order to setup another AwareOffice 
environment as a test bed for further intelligent office technologies 
within that project. 

VII. CONLCUSION AND FUTURE WORK 
We presented the Particle system – a completely distributed net-

worked sensor system that seamlessly integrates sensor node technol-
ogy and backend components without a middleware layer. The ap-
proach is achieved by the distribution of all information and the use of 
ConCom as a common communication language uniformly throughout 
the system. As a result, the loose coupling of components makes it 
appropriate for highly mobile and ad-hoc settings. As next steps, we 
will broaden the palette of sensors and improve the developer support, 
by introducing new programming abstractions for managing the sys-
tem at this level of distribution. The goal is to decrease the complexity 
for novice developers of the system, but still to facilitate the flexibility 
and detailed control of the current library based approach for experts. 
The Particle file system will play a major role in this effort and will be 
enhanced with adaptive capabilities. 
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